单位球间全纯和多谐映射边界处的Schwarz引理

IF 0.6 4区 数学 Q3 MATHEMATICS
Jianfei Wang
{"title":"单位球间全纯和多谐映射边界处的Schwarz引理","authors":"Jianfei Wang","doi":"10.11650/tjm/230902","DOIUrl":null,"url":null,"abstract":"We give Schwarz lemma at the boundary for holomorphic mappings between $p$-unit ball $B_{p}^{n} \\subset \\mathbb{C}^{n}$ and $B_{p}^{N} \\subset \\mathbb{C}^{N}$, where $p \\geq 2$. When $p = 2$, this result reduces to that of Liu, Chen and Pan [21] between the Euclidean unit balls, and our method is new. By generalizing pluriharmonic Schwarz lemma of Chen and Gauthier [5] from $p = 2$ to $p \\geq 2$, we obtain the boundary Schwarz lemma for pluriharmonic mappings between $p$-unit balls.","PeriodicalId":22176,"journal":{"name":"Taiwanese Journal of Mathematics","volume":"317 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Schwarz Lemma at the Boundary for Holomorphic and Pluriharmonic Mappings Between $p$-unit Balls\",\"authors\":\"Jianfei Wang\",\"doi\":\"10.11650/tjm/230902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give Schwarz lemma at the boundary for holomorphic mappings between $p$-unit ball $B_{p}^{n} \\\\subset \\\\mathbb{C}^{n}$ and $B_{p}^{N} \\\\subset \\\\mathbb{C}^{N}$, where $p \\\\geq 2$. When $p = 2$, this result reduces to that of Liu, Chen and Pan [21] between the Euclidean unit balls, and our method is new. By generalizing pluriharmonic Schwarz lemma of Chen and Gauthier [5] from $p = 2$ to $p \\\\geq 2$, we obtain the boundary Schwarz lemma for pluriharmonic mappings between $p$-unit balls.\",\"PeriodicalId\":22176,\"journal\":{\"name\":\"Taiwanese Journal of Mathematics\",\"volume\":\"317 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Taiwanese Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11650/tjm/230902\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Taiwanese Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11650/tjm/230902","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给出了$p$ -单位球$B_{p}^{n} \subset \mathbb{C}^{n}$与$B_{p}^{N} \subset \mathbb{C}^{N}$之间全纯映射边界处的Schwarz引理,其中$p \geq 2$。当$p = 2$时,该结果简化为Liu, Chen和Pan[21]在欧几里得单位球之间的结果,并且我们的方法是新的。将Chen和Gauthier[5]的多谐Schwarz引理从$p = 2$推广到$p \geq 2$,得到了$p$ -单位球间多谐映射的边界Schwarz引理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Schwarz Lemma at the Boundary for Holomorphic and Pluriharmonic Mappings Between $p$-unit Balls
We give Schwarz lemma at the boundary for holomorphic mappings between $p$-unit ball $B_{p}^{n} \subset \mathbb{C}^{n}$ and $B_{p}^{N} \subset \mathbb{C}^{N}$, where $p \geq 2$. When $p = 2$, this result reduces to that of Liu, Chen and Pan [21] between the Euclidean unit balls, and our method is new. By generalizing pluriharmonic Schwarz lemma of Chen and Gauthier [5] from $p = 2$ to $p \geq 2$, we obtain the boundary Schwarz lemma for pluriharmonic mappings between $p$-unit balls.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
35
审稿时长
3 months
期刊介绍: The Taiwanese Journal of Mathematics, published by the Mathematical Society of the Republic of China (Taiwan), is a continuation of the former Chinese Journal of Mathematics (1973-1996). It aims to publish original research papers and survey articles in all areas of mathematics. It will also occasionally publish proceedings of conferences co-organized by the Society. The purpose is to reflect the progress of the mathematical research in Taiwan and, by providing an international forum, to stimulate its further developments. The journal appears bimonthly each year beginning from 2008.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信