{"title":"中尺度双旋翼直升机悬停飞行动力学模型辨识","authors":"Carl Runco, Moble Benedict","doi":"10.1177/17568293231206943","DOIUrl":null,"url":null,"abstract":"In this paper the flight dynamics of a 33-gram twin-cyclocopter is analyzed via deriving a Linear Time Invariant (LTI) dynamics model from flight test data. The twin-cyclocopter is a novel micro air vehicle that uses two co-rotating cycloidal rotors to generate thrust and a coaxial nose rotor to counteract the reaction torque and provide additional thrust. During flight tests, perturbation maneuvers were performed about the hovering state to excite different modes and a 3D motion capture system collected attitude and position data. The data was used to extract a bare airframe LTI model linearized about the hovering state using time-domain system identification techniques. The model demonstrated that the roll and yaw modes are gyroscopically coupled with stable high-frequency and low-frequency modes. Comparing the two different yaw control methods: thrust vectoring of the cycloidal rotors and differential torque of the coaxial nose rotor, the former was more effective.","PeriodicalId":49053,"journal":{"name":"International Journal of Micro Air Vehicles","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flight dynamics model identification of a meso-scale twin-cyclocopter in hover\",\"authors\":\"Carl Runco, Moble Benedict\",\"doi\":\"10.1177/17568293231206943\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper the flight dynamics of a 33-gram twin-cyclocopter is analyzed via deriving a Linear Time Invariant (LTI) dynamics model from flight test data. The twin-cyclocopter is a novel micro air vehicle that uses two co-rotating cycloidal rotors to generate thrust and a coaxial nose rotor to counteract the reaction torque and provide additional thrust. During flight tests, perturbation maneuvers were performed about the hovering state to excite different modes and a 3D motion capture system collected attitude and position data. The data was used to extract a bare airframe LTI model linearized about the hovering state using time-domain system identification techniques. The model demonstrated that the roll and yaw modes are gyroscopically coupled with stable high-frequency and low-frequency modes. Comparing the two different yaw control methods: thrust vectoring of the cycloidal rotors and differential torque of the coaxial nose rotor, the former was more effective.\",\"PeriodicalId\":49053,\"journal\":{\"name\":\"International Journal of Micro Air Vehicles\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Micro Air Vehicles\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/17568293231206943\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Micro Air Vehicles","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/17568293231206943","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Flight dynamics model identification of a meso-scale twin-cyclocopter in hover
In this paper the flight dynamics of a 33-gram twin-cyclocopter is analyzed via deriving a Linear Time Invariant (LTI) dynamics model from flight test data. The twin-cyclocopter is a novel micro air vehicle that uses two co-rotating cycloidal rotors to generate thrust and a coaxial nose rotor to counteract the reaction torque and provide additional thrust. During flight tests, perturbation maneuvers were performed about the hovering state to excite different modes and a 3D motion capture system collected attitude and position data. The data was used to extract a bare airframe LTI model linearized about the hovering state using time-domain system identification techniques. The model demonstrated that the roll and yaw modes are gyroscopically coupled with stable high-frequency and low-frequency modes. Comparing the two different yaw control methods: thrust vectoring of the cycloidal rotors and differential torque of the coaxial nose rotor, the former was more effective.
期刊介绍:
The role of the International Journal of Micro Air Vehicles is to provide the scientific and engineering community with a peer-reviewed open access journal dedicated to publishing high-quality technical articles summarizing both fundamental and applied research in the area of micro air vehicles.