无边界控制椭圆型临界方程的浓度分析:基态爆破

IF 1.3 4区 数学 Q2 MATHEMATICS, APPLIED
Hussein Mesmar, Frédéric Robert
{"title":"无边界控制椭圆型临界方程的浓度分析:基态爆破","authors":"Hussein Mesmar, Frédéric Robert","doi":"10.3934/dcdss.2023199","DOIUrl":null,"url":null,"abstract":"We perform the apriori analysis of solutions to critical nonlinear elliptic equations on manifolds with boundary. The solutions are of minimizing type. The originality is that we impose no condition on the boundary, which leads us to assume $ L^2- $concentration. We also analyze the effect of a non-homogeneous nonlinearity that results in the fast convergence of the concentration point.","PeriodicalId":48838,"journal":{"name":"Discrete and Continuous Dynamical Systems-Series S","volume":"16 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Concentration analysis for elliptic critical equations with no boundary control: Ground-state blow-up\",\"authors\":\"Hussein Mesmar, Frédéric Robert\",\"doi\":\"10.3934/dcdss.2023199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We perform the apriori analysis of solutions to critical nonlinear elliptic equations on manifolds with boundary. The solutions are of minimizing type. The originality is that we impose no condition on the boundary, which leads us to assume $ L^2- $concentration. We also analyze the effect of a non-homogeneous nonlinearity that results in the fast convergence of the concentration point.\",\"PeriodicalId\":48838,\"journal\":{\"name\":\"Discrete and Continuous Dynamical Systems-Series S\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete and Continuous Dynamical Systems-Series S\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/dcdss.2023199\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete and Continuous Dynamical Systems-Series S","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/dcdss.2023199","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文对具有边界的流形上一类临界非线性椭圆方程的解进行了先验分析。解是最小化型的。其独创性在于,我们没有对边界施加任何条件,这导致我们假设$ L^2- $浓度。我们还分析了导致集中点快速收敛的非齐次非线性的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Concentration analysis for elliptic critical equations with no boundary control: Ground-state blow-up
We perform the apriori analysis of solutions to critical nonlinear elliptic equations on manifolds with boundary. The solutions are of minimizing type. The originality is that we impose no condition on the boundary, which leads us to assume $ L^2- $concentration. We also analyze the effect of a non-homogeneous nonlinearity that results in the fast convergence of the concentration point.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
5.60%
发文量
177
期刊介绍: Series S of Discrete and Continuous Dynamical Systems only publishes theme issues. Each issue is devoted to a specific area of the mathematical, physical and engineering sciences. This area will define a research frontier that is advancing rapidly, often bridging mathematics and sciences. DCDS-S is essential reading for mathematicians, physicists, engineers and other physical scientists. The journal is published bimonthly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信