{"title":"利用手性c2对称元原子的高效自旋解耦调制","authors":"Chen, Haohan, Wu, Jiepeng, He, Minglei, Wang, Hao, Wu, Xinen, Fan, Kezhou, Liu, Haiying, Li, Qiang, Wu, Lijun, Wong, Kam Sing","doi":"10.48550/arxiv.2308.06157","DOIUrl":null,"url":null,"abstract":"Orthogonal circularly polarized light is essential for multiplexing tunable metasurfaces. Mainstream spin-decoupled metasurfaces, consisting of numerous meta-atoms with mirror symmetry, rely on the cooperative modulation of the Pancharatnam-Berry (PB) phase and the propagation phase. This paper demonstrates spin-decoupled functionality through the synergistic utilization of planar chiral meta-atom phase response and PB phase. Based on the Jones calculus, it has been found that meta-atoms with chiral C2-symmetry owns a larger geometric parameter range with high cross-polarization ratio compared to those with mirror symmetry or higher symmetries at the same aspect ratio. This characteristic is advantageous in terms of enabling high-efficiency manipulation and enhancing the signal-to-noise ratio. As an example, 10 kinds of C2-symmetry chiral meta-atoms with a H-like shape are selected by the self-adaptive genetic algorithm to attain a full 2$\\pi$ phase span with an interval of $\\pi$/5. To mitigate the additional propagation phase change of the guided modes originated from the arrangement alternation upon the rotation of the meta-atoms, the enantiomer of chiral meta-atoms and its PB phase delay are adopted to minimize the difference between the actual and desired target phases. A polarization-insensitive metalens and a chiral virtual-moving metalens array are designed to demonstrate the spin-decoupled function with both high efficiency and signal-to-noise ratio. The work in this paper may trigger more exciting and interesting spin-decoupled multiplexing metasurfaces and broaden the prospect of chiroptical applications.","PeriodicalId":496270,"journal":{"name":"arXiv (Cornell University)","volume":"220 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High efficiency spin-decoupled modulation using chiral C2-symmetric\\n meta-atoms\",\"authors\":\"Chen, Haohan, Wu, Jiepeng, He, Minglei, Wang, Hao, Wu, Xinen, Fan, Kezhou, Liu, Haiying, Li, Qiang, Wu, Lijun, Wong, Kam Sing\",\"doi\":\"10.48550/arxiv.2308.06157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Orthogonal circularly polarized light is essential for multiplexing tunable metasurfaces. Mainstream spin-decoupled metasurfaces, consisting of numerous meta-atoms with mirror symmetry, rely on the cooperative modulation of the Pancharatnam-Berry (PB) phase and the propagation phase. This paper demonstrates spin-decoupled functionality through the synergistic utilization of planar chiral meta-atom phase response and PB phase. Based on the Jones calculus, it has been found that meta-atoms with chiral C2-symmetry owns a larger geometric parameter range with high cross-polarization ratio compared to those with mirror symmetry or higher symmetries at the same aspect ratio. This characteristic is advantageous in terms of enabling high-efficiency manipulation and enhancing the signal-to-noise ratio. As an example, 10 kinds of C2-symmetry chiral meta-atoms with a H-like shape are selected by the self-adaptive genetic algorithm to attain a full 2$\\\\pi$ phase span with an interval of $\\\\pi$/5. To mitigate the additional propagation phase change of the guided modes originated from the arrangement alternation upon the rotation of the meta-atoms, the enantiomer of chiral meta-atoms and its PB phase delay are adopted to minimize the difference between the actual and desired target phases. A polarization-insensitive metalens and a chiral virtual-moving metalens array are designed to demonstrate the spin-decoupled function with both high efficiency and signal-to-noise ratio. The work in this paper may trigger more exciting and interesting spin-decoupled multiplexing metasurfaces and broaden the prospect of chiroptical applications.\",\"PeriodicalId\":496270,\"journal\":{\"name\":\"arXiv (Cornell University)\",\"volume\":\"220 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv (Cornell University)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arxiv.2308.06157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv (Cornell University)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arxiv.2308.06157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High efficiency spin-decoupled modulation using chiral C2-symmetric
meta-atoms
Orthogonal circularly polarized light is essential for multiplexing tunable metasurfaces. Mainstream spin-decoupled metasurfaces, consisting of numerous meta-atoms with mirror symmetry, rely on the cooperative modulation of the Pancharatnam-Berry (PB) phase and the propagation phase. This paper demonstrates spin-decoupled functionality through the synergistic utilization of planar chiral meta-atom phase response and PB phase. Based on the Jones calculus, it has been found that meta-atoms with chiral C2-symmetry owns a larger geometric parameter range with high cross-polarization ratio compared to those with mirror symmetry or higher symmetries at the same aspect ratio. This characteristic is advantageous in terms of enabling high-efficiency manipulation and enhancing the signal-to-noise ratio. As an example, 10 kinds of C2-symmetry chiral meta-atoms with a H-like shape are selected by the self-adaptive genetic algorithm to attain a full 2$\pi$ phase span with an interval of $\pi$/5. To mitigate the additional propagation phase change of the guided modes originated from the arrangement alternation upon the rotation of the meta-atoms, the enantiomer of chiral meta-atoms and its PB phase delay are adopted to minimize the difference between the actual and desired target phases. A polarization-insensitive metalens and a chiral virtual-moving metalens array are designed to demonstrate the spin-decoupled function with both high efficiency and signal-to-noise ratio. The work in this paper may trigger more exciting and interesting spin-decoupled multiplexing metasurfaces and broaden the prospect of chiroptical applications.