求助PDF
{"title":"(m,n)*-超常算子的Riesz幂等、谱映射定理和Weyl定理","authors":"Sonu Ram, Preeti Dharmarha","doi":"10.1515/rose-2023-2016","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we show that the spectral mapping theorem holds for <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>m</m:mi> <m:mo>,</m:mo> <m:mi>n</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>*</m:mo> </m:msup> </m:math> {(m,n)^{*}} -paranormal operators. We also exhibit the self-adjointness of the Riesz idempotent <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>E</m:mi> <m:mi>λ</m:mi> </m:msub> </m:math> {E_{\\lambda}} of <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>m</m:mi> <m:mo>,</m:mo> <m:mi>n</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>*</m:mo> </m:msup> </m:math> {(m,n)^{*}} -paranormal operators concerning for each isolated point λ of <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>σ</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>T</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> {\\sigma(T)} . Moreover, we show Weyl’s theorem for <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>m</m:mi> <m:mo>,</m:mo> <m:mi>n</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>*</m:mo> </m:msup> </m:math> {(m,n)^{*}} -paranormal operators and <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>f</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>T</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> {f(T)} for every <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>f</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:mi mathvariant=\"script\">ℋ</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>σ</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>T</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> {f\\in\\mathcal{H}(\\sigma(T))} . Furthermore, we investigate the class of totally <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>m</m:mi> <m:mo>,</m:mo> <m:mi>n</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>*</m:mo> </m:msup> </m:math> {(m,n)^{*}} -paranormal operators and show that Weyl’s theorem holds for operators in this class.","PeriodicalId":43421,"journal":{"name":"Random Operators and Stochastic Equations","volume":"7 1","pages":"0"},"PeriodicalIF":0.3000,"publicationDate":"2023-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Riesz idempotent, spectral mapping theorem and Weyl's theorem for (<i>m</i>,<i>n</i>)<sup>*</sup>-paranormal operators\",\"authors\":\"Sonu Ram, Preeti Dharmarha\",\"doi\":\"10.1515/rose-2023-2016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we show that the spectral mapping theorem holds for <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>m</m:mi> <m:mo>,</m:mo> <m:mi>n</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo>*</m:mo> </m:msup> </m:math> {(m,n)^{*}} -paranormal operators. We also exhibit the self-adjointness of the Riesz idempotent <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mi>E</m:mi> <m:mi>λ</m:mi> </m:msub> </m:math> {E_{\\\\lambda}} of <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>m</m:mi> <m:mo>,</m:mo> <m:mi>n</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo>*</m:mo> </m:msup> </m:math> {(m,n)^{*}} -paranormal operators concerning for each isolated point λ of <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>σ</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>T</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> {\\\\sigma(T)} . Moreover, we show Weyl’s theorem for <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>m</m:mi> <m:mo>,</m:mo> <m:mi>n</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo>*</m:mo> </m:msup> </m:math> {(m,n)^{*}} -paranormal operators and <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>f</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>T</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> {f(T)} for every <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>f</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:mi mathvariant=\\\"script\\\">ℋ</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mi>σ</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>T</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> {f\\\\in\\\\mathcal{H}(\\\\sigma(T))} . Furthermore, we investigate the class of totally <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>m</m:mi> <m:mo>,</m:mo> <m:mi>n</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo>*</m:mo> </m:msup> </m:math> {(m,n)^{*}} -paranormal operators and show that Weyl’s theorem holds for operators in this class.\",\"PeriodicalId\":43421,\"journal\":{\"name\":\"Random Operators and Stochastic Equations\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Random Operators and Stochastic Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/rose-2023-2016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Operators and Stochastic Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/rose-2023-2016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
引用
批量引用
Riesz idempotent, spectral mapping theorem and Weyl's theorem for (m ,n )* -paranormal operators
Abstract In this paper, we show that the spectral mapping theorem holds for ( m , n ) * {(m,n)^{*}} -paranormal operators. We also exhibit the self-adjointness of the Riesz idempotent E λ {E_{\lambda}} of ( m , n ) * {(m,n)^{*}} -paranormal operators concerning for each isolated point λ of σ ( T ) {\sigma(T)} . Moreover, we show Weyl’s theorem for ( m , n ) * {(m,n)^{*}} -paranormal operators and f ( T ) {f(T)} for every f ∈ ℋ ( σ ( T ) ) {f\in\mathcal{H}(\sigma(T))} . Furthermore, we investigate the class of totally ( m , n ) * {(m,n)^{*}} -paranormal operators and show that Weyl’s theorem holds for operators in this class.