(m,n)*-超常算子的Riesz幂等、谱映射定理和Weyl定理

IF 0.3 Q4 STATISTICS & PROBABILITY
Sonu Ram, Preeti Dharmarha
{"title":"(m,n)*-超常算子的Riesz幂等、谱映射定理和Weyl定理","authors":"Sonu Ram, Preeti Dharmarha","doi":"10.1515/rose-2023-2016","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we show that the spectral mapping theorem holds for <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>m</m:mi> <m:mo>,</m:mo> <m:mi>n</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>*</m:mo> </m:msup> </m:math> {(m,n)^{*}} -paranormal operators. We also exhibit the self-adjointness of the Riesz idempotent <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>E</m:mi> <m:mi>λ</m:mi> </m:msub> </m:math> {E_{\\lambda}} of <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>m</m:mi> <m:mo>,</m:mo> <m:mi>n</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>*</m:mo> </m:msup> </m:math> {(m,n)^{*}} -paranormal operators concerning for each isolated point λ of <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>σ</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>T</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> {\\sigma(T)} . Moreover, we show Weyl’s theorem for <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>m</m:mi> <m:mo>,</m:mo> <m:mi>n</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>*</m:mo> </m:msup> </m:math> {(m,n)^{*}} -paranormal operators and <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>f</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>T</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> {f(T)} for every <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>f</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:mi mathvariant=\"script\">ℋ</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>σ</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>T</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> {f\\in\\mathcal{H}(\\sigma(T))} . Furthermore, we investigate the class of totally <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>m</m:mi> <m:mo>,</m:mo> <m:mi>n</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>*</m:mo> </m:msup> </m:math> {(m,n)^{*}} -paranormal operators and show that Weyl’s theorem holds for operators in this class.","PeriodicalId":43421,"journal":{"name":"Random Operators and Stochastic Equations","volume":"7 1","pages":"0"},"PeriodicalIF":0.3000,"publicationDate":"2023-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Riesz idempotent, spectral mapping theorem and Weyl's theorem for (<i>m</i>,<i>n</i>)<sup>*</sup>-paranormal operators\",\"authors\":\"Sonu Ram, Preeti Dharmarha\",\"doi\":\"10.1515/rose-2023-2016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we show that the spectral mapping theorem holds for <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>m</m:mi> <m:mo>,</m:mo> <m:mi>n</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo>*</m:mo> </m:msup> </m:math> {(m,n)^{*}} -paranormal operators. We also exhibit the self-adjointness of the Riesz idempotent <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mi>E</m:mi> <m:mi>λ</m:mi> </m:msub> </m:math> {E_{\\\\lambda}} of <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>m</m:mi> <m:mo>,</m:mo> <m:mi>n</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo>*</m:mo> </m:msup> </m:math> {(m,n)^{*}} -paranormal operators concerning for each isolated point λ of <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>σ</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>T</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> {\\\\sigma(T)} . Moreover, we show Weyl’s theorem for <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>m</m:mi> <m:mo>,</m:mo> <m:mi>n</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo>*</m:mo> </m:msup> </m:math> {(m,n)^{*}} -paranormal operators and <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>f</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>T</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> {f(T)} for every <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>f</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:mi mathvariant=\\\"script\\\">ℋ</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mi>σ</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>T</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> {f\\\\in\\\\mathcal{H}(\\\\sigma(T))} . Furthermore, we investigate the class of totally <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>m</m:mi> <m:mo>,</m:mo> <m:mi>n</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo>*</m:mo> </m:msup> </m:math> {(m,n)^{*}} -paranormal operators and show that Weyl’s theorem holds for operators in this class.\",\"PeriodicalId\":43421,\"journal\":{\"name\":\"Random Operators and Stochastic Equations\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Random Operators and Stochastic Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/rose-2023-2016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Operators and Stochastic Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/rose-2023-2016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文证明了谱映射定理对(m,n) * {(m,n)^{* }}-超正规算子成立。我们还{证明了(m,n) * (m,n)*的Riesz幂等E λ E_ {\lambda}}的自伴随性,这些{算子与σ (T) {}}{\sigma (T)的每个孤立点λ有关}。此外,我们证明了Weyl定理对于(m,n) *{ (m,n)^{*}} -超正规算子和f{(T)对于每一个f}∈h _ h _ (σ _ (T)) {f\in\mathcal{H} (\sigma (T))}。进一步研究了一类完全(m,n) *{ (m,n)^{*}} -超正规算子,并证明了Weyl定理对该类算子成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Riesz idempotent, spectral mapping theorem and Weyl's theorem for (m,n)*-paranormal operators
Abstract In this paper, we show that the spectral mapping theorem holds for ( m , n ) * {(m,n)^{*}} -paranormal operators. We also exhibit the self-adjointness of the Riesz idempotent E λ {E_{\lambda}} of ( m , n ) * {(m,n)^{*}} -paranormal operators concerning for each isolated point λ of σ ( T ) {\sigma(T)} . Moreover, we show Weyl’s theorem for ( m , n ) * {(m,n)^{*}} -paranormal operators and f ( T ) {f(T)} for every f ( σ ( T ) ) {f\in\mathcal{H}(\sigma(T))} . Furthermore, we investigate the class of totally ( m , n ) * {(m,n)^{*}} -paranormal operators and show that Weyl’s theorem holds for operators in this class.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Random Operators and Stochastic Equations
Random Operators and Stochastic Equations STATISTICS & PROBABILITY-
CiteScore
0.60
自引率
25.00%
发文量
24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信