L^{p} $紧性准则及其在一些非局部能量泛函变分收敛中的应用

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Qiang Du, Tadele Mengesha, Xiaochuan Tian
{"title":"L^{p} $紧性准则及其在一些非局部能量泛函变分收敛中的应用","authors":"Qiang Du, Tadele Mengesha, Xiaochuan Tian","doi":"10.3934/mine.2023097","DOIUrl":null,"url":null,"abstract":"<abstract><p>Motivated by some variational problems from a nonlocal model of mechanics, this work presents a set of sufficient conditions that guarantee a compact inclusion in the function space of $ L^{p} $ vector fields defined on a domain $ \\Omega $ that is either a bounded domain in $ \\mathbb{R}^{d} $ or $ \\mathbb{R}^{d} $ itself. The criteria are nonlocal and are given with respect to nonlocal interaction kernels that may not be necessarily radially symmetric. Moreover, these criteria for vector fields are also different from those given for scalar fields in that the conditions are based on nonlocal interactions involving only parts of the components of the vector fields. The $ L^{p} $ compactness criteria are utilized in demonstrating the convergence of minimizers of parameterized nonlocal energy functionals.</p></abstract>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"$ L^{p} $ compactness criteria with an application to variational convergence of some nonlocal energy functionals\",\"authors\":\"Qiang Du, Tadele Mengesha, Xiaochuan Tian\",\"doi\":\"10.3934/mine.2023097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<abstract><p>Motivated by some variational problems from a nonlocal model of mechanics, this work presents a set of sufficient conditions that guarantee a compact inclusion in the function space of $ L^{p} $ vector fields defined on a domain $ \\\\Omega $ that is either a bounded domain in $ \\\\mathbb{R}^{d} $ or $ \\\\mathbb{R}^{d} $ itself. The criteria are nonlocal and are given with respect to nonlocal interaction kernels that may not be necessarily radially symmetric. Moreover, these criteria for vector fields are also different from those given for scalar fields in that the conditions are based on nonlocal interactions involving only parts of the components of the vector fields. The $ L^{p} $ compactness criteria are utilized in demonstrating the convergence of minimizers of parameterized nonlocal energy functionals.</p></abstract>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/mine.2023097\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/mine.2023097","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

摘要

>< >& gt;& gt;& gt;& gt;& gt;& gt;& gt;& gt;& gt;& gt;& gt;& gt;& gt;& gt;& gt;& gt;& gt;& gt;& gt;& gt;& gt;& gt;& gt;& gt;& gt;& gt;& gt;& gt;& gt;& gt;& gt;& gt;& gt;& gt;& gt;& gt;& gt;& gt;& gt;& gt;这些准则是非局部的,并且是关于非局部相互作用核给出的,这些核不一定是径向对称的。此外,这些向量场的准则也不同于标量场的准则,因为这些条件是基于只涉及向量场部分分量的非局部相互作用。$ L^{p} $紧性准则用于证明参数化非局部能量泛函的极小值的收敛性。</p></abstract>
本文章由计算机程序翻译,如有差异,请以英文原文为准。
$ L^{p} $ compactness criteria with an application to variational convergence of some nonlocal energy functionals

Motivated by some variational problems from a nonlocal model of mechanics, this work presents a set of sufficient conditions that guarantee a compact inclusion in the function space of $ L^{p} $ vector fields defined on a domain $ \Omega $ that is either a bounded domain in $ \mathbb{R}^{d} $ or $ \mathbb{R}^{d} $ itself. The criteria are nonlocal and are given with respect to nonlocal interaction kernels that may not be necessarily radially symmetric. Moreover, these criteria for vector fields are also different from those given for scalar fields in that the conditions are based on nonlocal interactions involving only parts of the components of the vector fields. The $ L^{p} $ compactness criteria are utilized in demonstrating the convergence of minimizers of parameterized nonlocal energy functionals.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信