田野里的小班数在家庭里 $$\mathbb {Q}(\sqrt{9m^2+4m})$$

IF 0.6 3区 数学 Q3 MATHEMATICS
Nimish Kumar Mahapatra, Prem Prakash Pandey, Mahesh Kumar Ram
{"title":"田野里的小班数在家庭里 $$\\mathbb {Q}(\\sqrt{9m^2+4m})$$","authors":"Nimish Kumar Mahapatra, Prem Prakash Pandey, Mahesh Kumar Ram","doi":"10.1007/s11139-022-00695-w","DOIUrl":null,"url":null,"abstract":"We study the class number one problem for real quadratic fields $\\mathbb{Q}(\\sqrt{9m^2+ 4m})$, where $m$ is an odd integer. We show that for $m \\equiv 1 \\pmod 3$ there is only one such field with class number one and only one such field with class number two.","PeriodicalId":54511,"journal":{"name":"Ramanujan Journal","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fields of small class number in the family $$\\\\mathbb {Q}(\\\\sqrt{9m^2+4m})$$\",\"authors\":\"Nimish Kumar Mahapatra, Prem Prakash Pandey, Mahesh Kumar Ram\",\"doi\":\"10.1007/s11139-022-00695-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the class number one problem for real quadratic fields $\\\\mathbb{Q}(\\\\sqrt{9m^2+ 4m})$, where $m$ is an odd integer. We show that for $m \\\\equiv 1 \\\\pmod 3$ there is only one such field with class number one and only one such field with class number two.\",\"PeriodicalId\":54511,\"journal\":{\"name\":\"Ramanujan Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ramanujan Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11139-022-00695-w\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ramanujan Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11139-022-00695-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

我们研究了实数二次域$\mathbb{Q}(\sqrt{9m^2+ 4m})$的第一类问题,其中$m$是一个奇整数。我们证明,对于$m \equiv 1 \pmod 3$,只有一个类为1的字段,也只有一个类为2的字段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fields of small class number in the family $$\mathbb {Q}(\sqrt{9m^2+4m})$$
We study the class number one problem for real quadratic fields $\mathbb{Q}(\sqrt{9m^2+ 4m})$, where $m$ is an odd integer. We show that for $m \equiv 1 \pmod 3$ there is only one such field with class number one and only one such field with class number two.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ramanujan Journal
Ramanujan Journal 数学-数学
CiteScore
1.40
自引率
14.30%
发文量
133
审稿时长
6-12 weeks
期刊介绍: The Ramanujan Journal publishes original papers of the highest quality in all areas of mathematics influenced by Srinivasa Ramanujan. His remarkable discoveries have made a great impact on several branches of mathematics, revealing deep and fundamental connections. The following prioritized listing of topics of interest to the journal is not intended to be exclusive but to demonstrate the editorial policy of attracting papers which represent a broad range of interest: Hyper-geometric and basic hyper-geometric series (q-series) * Partitions, compositions and combinatory analysis * Circle method and asymptotic formulae * Mock theta functions * Elliptic and theta functions * Modular forms and automorphic functions * Special functions and definite integrals * Continued fractions * Diophantine analysis including irrationality and transcendence * Number theory * Fourier analysis with applications to number theory * Connections between Lie algebras and q-series.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信