{"title":"用量纲分析、马戈洛斯-列维汀定理和朗道尔原理计算宇宙的熵和宇宙常数","authors":"Mario Leo","doi":"10.4236/jmp.2023.1410075","DOIUrl":null,"url":null,"abstract":"By means of the dimensional analysis a spherically simmetric universe with a mass M = c3/(2HG) and radius equal to c/H is considered, where H is the Hubble constant, c the speed of light and G the Newton gravitational constant. The density corresponding to this mass is equal to the critical density ρcr = 3H2/(8πG). This universe evolves according to a Bondi-Gold-Hoyle scenario, with continuous creation of matter at a rate such to maintain, during the expansion, the density always critical density. Using the Margolus-Levitin theorem and the Landauer’s principle, an entropy is associated with this universe, obtaining a formula having the same structure as the Bekenstein-Hawking formula of the entropy of a black hole. Furthermore, a time-dependent cosmological constant Λ, function of the Hubble constant and the speed of light, is proposed.","PeriodicalId":16352,"journal":{"name":"Journal of Modern Physics","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Entropy and Cosmological Constant of a Universe Calculated by Means of Dimensional Analysis, Margolus-Levitin Theorem and Landauer’s Principle\",\"authors\":\"Mario Leo\",\"doi\":\"10.4236/jmp.2023.1410075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By means of the dimensional analysis a spherically simmetric universe with a mass M = c3/(2HG) and radius equal to c/H is considered, where H is the Hubble constant, c the speed of light and G the Newton gravitational constant. The density corresponding to this mass is equal to the critical density ρcr = 3H2/(8πG). This universe evolves according to a Bondi-Gold-Hoyle scenario, with continuous creation of matter at a rate such to maintain, during the expansion, the density always critical density. Using the Margolus-Levitin theorem and the Landauer’s principle, an entropy is associated with this universe, obtaining a formula having the same structure as the Bekenstein-Hawking formula of the entropy of a black hole. Furthermore, a time-dependent cosmological constant Λ, function of the Hubble constant and the speed of light, is proposed.\",\"PeriodicalId\":16352,\"journal\":{\"name\":\"Journal of Modern Physics\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Modern Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/jmp.2023.1410075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/jmp.2023.1410075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Entropy and Cosmological Constant of a Universe Calculated by Means of Dimensional Analysis, Margolus-Levitin Theorem and Landauer’s Principle
By means of the dimensional analysis a spherically simmetric universe with a mass M = c3/(2HG) and radius equal to c/H is considered, where H is the Hubble constant, c the speed of light and G the Newton gravitational constant. The density corresponding to this mass is equal to the critical density ρcr = 3H2/(8πG). This universe evolves according to a Bondi-Gold-Hoyle scenario, with continuous creation of matter at a rate such to maintain, during the expansion, the density always critical density. Using the Margolus-Levitin theorem and the Landauer’s principle, an entropy is associated with this universe, obtaining a formula having the same structure as the Bekenstein-Hawking formula of the entropy of a black hole. Furthermore, a time-dependent cosmological constant Λ, function of the Hubble constant and the speed of light, is proposed.