分支过滤和微分形式

IF 0.8 3区 数学 Q2 MATHEMATICS
Viktor Aleksandrovich Abrashkin
{"title":"分支过滤和微分形式","authors":"Viktor Aleksandrovich Abrashkin","doi":"10.4213/im9322e","DOIUrl":null,"url":null,"abstract":"Let $L$ be a complete discrete valuation field of prime characteristic $p$ with finite residue field. Denote by $\\Gamma_{L}^{(v)}$ the ramification subgroups of $\\Gamma_{L}=\\operatorname{Gal}(L^{\\mathrm{sep}}/L)$. We consider the category $\\operatorname{M\\Gamma}_{L}^{\\mathrm{Lie}}$ of finite $\\mathbb{Z}_p[\\Gamma_{L}]$-modules $H$, satisfying some additional (Lie)-condition on the image of $\\Gamma_L$ in $\\operatorname{Aut}_{\\mathbb{Z}_p}H$. In the paper it is proved that all information about the images of the groups $\\Gamma_L^{(v)}$ in $\\operatorname{Aut}_{\\mathbb{Z}_p}H$ can be explicitly extracted from some differential forms $\\widetilde{\\Omega} [N]$ on the Fontaine etale $\\phi $-module $M(H)$ associated with $H$. The forms $\\widetilde{\\Omega}[N]$ are completely determined by a canonical connection $\\nabla $ on $M(H)$. In the case of fields $L$ of mixed characteristic, which contain a primitive $p$th root of unity, we show that a similar problem for $\\mathbb{F}_p[\\Gamma_L]$-modules also admits a solution. In this case we use the field-of-norms functor to construct the corresponding $\\phi $-module together with the action of the Galois group of a cyclic extension $L_1$ of $L$ of degree $p$. Then our solution involves the characteristic $p$ part (provided by the field-of-norms functor) and the condition for a \"good\" lift of a generator of $\\operatorname{Gal}(L_1/L)$. Apart from the above differential forms the statement of this condition uses the power series coming from the $p$-adic period of the formal group $\\mathbb{G}_m$.","PeriodicalId":54910,"journal":{"name":"Izvestiya Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ramification filtration and differential forms\",\"authors\":\"Viktor Aleksandrovich Abrashkin\",\"doi\":\"10.4213/im9322e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $L$ be a complete discrete valuation field of prime characteristic $p$ with finite residue field. Denote by $\\\\Gamma_{L}^{(v)}$ the ramification subgroups of $\\\\Gamma_{L}=\\\\operatorname{Gal}(L^{\\\\mathrm{sep}}/L)$. We consider the category $\\\\operatorname{M\\\\Gamma}_{L}^{\\\\mathrm{Lie}}$ of finite $\\\\mathbb{Z}_p[\\\\Gamma_{L}]$-modules $H$, satisfying some additional (Lie)-condition on the image of $\\\\Gamma_L$ in $\\\\operatorname{Aut}_{\\\\mathbb{Z}_p}H$. In the paper it is proved that all information about the images of the groups $\\\\Gamma_L^{(v)}$ in $\\\\operatorname{Aut}_{\\\\mathbb{Z}_p}H$ can be explicitly extracted from some differential forms $\\\\widetilde{\\\\Omega} [N]$ on the Fontaine etale $\\\\phi $-module $M(H)$ associated with $H$. The forms $\\\\widetilde{\\\\Omega}[N]$ are completely determined by a canonical connection $\\\\nabla $ on $M(H)$. In the case of fields $L$ of mixed characteristic, which contain a primitive $p$th root of unity, we show that a similar problem for $\\\\mathbb{F}_p[\\\\Gamma_L]$-modules also admits a solution. In this case we use the field-of-norms functor to construct the corresponding $\\\\phi $-module together with the action of the Galois group of a cyclic extension $L_1$ of $L$ of degree $p$. Then our solution involves the characteristic $p$ part (provided by the field-of-norms functor) and the condition for a \\\"good\\\" lift of a generator of $\\\\operatorname{Gal}(L_1/L)$. Apart from the above differential forms the statement of this condition uses the power series coming from the $p$-adic period of the formal group $\\\\mathbb{G}_m$.\",\"PeriodicalId\":54910,\"journal\":{\"name\":\"Izvestiya Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4213/im9322e\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4213/im9322e","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设$L$为素数特征的完全离散估值域$p$,具有有限剩余域。用$\Gamma_{L}^{(v)}$表示$\Gamma_{L}=\operatorname{Gal}(L^{\mathrm{sep}}/L)$的分枝子基团。考虑有限的$\mathbb{Z}_p[\Gamma_{L}]$ -模块$H$的类别$\operatorname{M\Gamma}_{L}^{\mathrm{Lie}}$,满足$\operatorname{Aut}_{\mathbb{Z}_p}H$中$\Gamma_L$的图像上的一些附加(Lie)-条件。本文证明了在与$H$相关联的Fontaine etale $\phi $ -模块$M(H)$上,可以从若干微分形式$\widetilde{\Omega} [N]$中显式地提取出$\operatorname{Aut}_{\mathbb{Z}_p}H$中$\Gamma_L^{(v)}$组图像的所有信息。表单$\widetilde{\Omega}[N]$完全由$M(H)$上的规范连接$\nabla $确定。对于混合特征域$L$,其中包含一个原始的$p$单位根,我们证明了$\mathbb{F}_p[\Gamma_L]$ -模块的类似问题也有一个解。在这种情况下,我们利用范数域函子和次为$p$的$L$的循环扩展$L_1$的伽罗瓦群的作用构造了相应的$\phi $ -模。然后,我们的解涉及到特征部分$p$(由范数域函子提供)和发电机的“好”升力的条件$\operatorname{Gal}(L_1/L)$。除上述微分形式外,这个条件的表述使用了形式群$\mathbb{G}_m$的$p$ -进周期的幂级数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ramification filtration and differential forms
Let $L$ be a complete discrete valuation field of prime characteristic $p$ with finite residue field. Denote by $\Gamma_{L}^{(v)}$ the ramification subgroups of $\Gamma_{L}=\operatorname{Gal}(L^{\mathrm{sep}}/L)$. We consider the category $\operatorname{M\Gamma}_{L}^{\mathrm{Lie}}$ of finite $\mathbb{Z}_p[\Gamma_{L}]$-modules $H$, satisfying some additional (Lie)-condition on the image of $\Gamma_L$ in $\operatorname{Aut}_{\mathbb{Z}_p}H$. In the paper it is proved that all information about the images of the groups $\Gamma_L^{(v)}$ in $\operatorname{Aut}_{\mathbb{Z}_p}H$ can be explicitly extracted from some differential forms $\widetilde{\Omega} [N]$ on the Fontaine etale $\phi $-module $M(H)$ associated with $H$. The forms $\widetilde{\Omega}[N]$ are completely determined by a canonical connection $\nabla $ on $M(H)$. In the case of fields $L$ of mixed characteristic, which contain a primitive $p$th root of unity, we show that a similar problem for $\mathbb{F}_p[\Gamma_L]$-modules also admits a solution. In this case we use the field-of-norms functor to construct the corresponding $\phi $-module together with the action of the Galois group of a cyclic extension $L_1$ of $L$ of degree $p$. Then our solution involves the characteristic $p$ part (provided by the field-of-norms functor) and the condition for a "good" lift of a generator of $\operatorname{Gal}(L_1/L)$. Apart from the above differential forms the statement of this condition uses the power series coming from the $p$-adic period of the formal group $\mathbb{G}_m$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Izvestiya Mathematics
Izvestiya Mathematics 数学-数学
CiteScore
1.30
自引率
0.00%
发文量
30
审稿时长
6-12 weeks
期刊介绍: The Russian original is rigorously refereed in Russia and the translations are carefully scrutinised and edited by the London Mathematical Society. This publication covers all fields of mathematics, but special attention is given to: Algebra; Mathematical logic; Number theory; Mathematical analysis; Geometry; Topology; Differential equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信