特殊玻尔-索默菲尔德几何:变化

IF 0.8 3区 数学 Q2 MATHEMATICS
Nikolai Andreevich Tyurin
{"title":"特殊玻尔-索默菲尔德几何:变化","authors":"Nikolai Andreevich Tyurin","doi":"10.4213/im9374e","DOIUrl":null,"url":null,"abstract":"This work continues investigations of special Bohr-Sommerfeld geometry for compact symplectic manifolds. By using natural deformation parameters we circumvent the difficulties involved in the definition of moduli spaces of special Bohr-Sommerfeld cycles for compact simply connected algebraic varieties. As a byproduct, we present some ideas of how our constructions can be exploited in the studies of Weinstein structures and Eliashberg conjectures.","PeriodicalId":54910,"journal":{"name":"Izvestiya Mathematics","volume":"55 1","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Special Bohr-Sommerfeld geometry: variations\",\"authors\":\"Nikolai Andreevich Tyurin\",\"doi\":\"10.4213/im9374e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work continues investigations of special Bohr-Sommerfeld geometry for compact symplectic manifolds. By using natural deformation parameters we circumvent the difficulties involved in the definition of moduli spaces of special Bohr-Sommerfeld cycles for compact simply connected algebraic varieties. As a byproduct, we present some ideas of how our constructions can be exploited in the studies of Weinstein structures and Eliashberg conjectures.\",\"PeriodicalId\":54910,\"journal\":{\"name\":\"Izvestiya Mathematics\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4213/im9374e\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4213/im9374e","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

这项工作继续研究紧辛流形的特殊玻尔-索默菲尔德几何。利用自然变形参数,克服了紧单连通代数变型的特殊Bohr-Sommerfeld循环模空间的定义困难。作为副产品,我们提出了一些关于如何在Weinstein结构和Eliashberg猜想的研究中利用我们的结构的想法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Special Bohr-Sommerfeld geometry: variations
This work continues investigations of special Bohr-Sommerfeld geometry for compact symplectic manifolds. By using natural deformation parameters we circumvent the difficulties involved in the definition of moduli spaces of special Bohr-Sommerfeld cycles for compact simply connected algebraic varieties. As a byproduct, we present some ideas of how our constructions can be exploited in the studies of Weinstein structures and Eliashberg conjectures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Izvestiya Mathematics
Izvestiya Mathematics 数学-数学
CiteScore
1.30
自引率
0.00%
发文量
30
审稿时长
6-12 weeks
期刊介绍: The Russian original is rigorously refereed in Russia and the translations are carefully scrutinised and edited by the London Mathematical Society. This publication covers all fields of mathematics, but special attention is given to: Algebra; Mathematical logic; Number theory; Mathematical analysis; Geometry; Topology; Differential equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信