文本分类分析印尼民众对Covid-19疫苗接种的意见情绪

Eka Miranda, Veronica Gabriella, Sriyanda Afrida Wahyudi, Jennifer Chai
{"title":"文本分类分析印尼民众对Covid-19疫苗接种的意见情绪","authors":"Eka Miranda, Veronica Gabriella, Sriyanda Afrida Wahyudi, Jennifer Chai","doi":"10.32520/stmsi.v12i2.2759","DOIUrl":null,"url":null,"abstract":"The purpose of this study is to implement text mining for sentiment analysis of Indonesian public opinion on COVID-19 vaccination on Twitter social media using text classification techniques Support Vector Machine (SVM) and Random Forest. The research begins with crawling data from Twitter from September 2021 to October 2021; data cleansing; text translation into English; data preprocessing using NTLK performed with and without the lemmatization process; sentiment analysis using TextBlob; distribution of training and testing data with the Hold-Out method of 70:30 and 80:20; hyperparameter tuning with GridSearchCV; text classification with SVM and Random Forest; and testing the classification results by calculating Accuracy, Precision, Recall, F-Measure based on confusion matrix. The results show that text classification Random Forest consistently has a higher accuracy rate than SVM with the highest accuracy value of 90,59% and most of the sentiments indicate neutral to the COVID-19 vaccination program.","PeriodicalId":32357,"journal":{"name":"Jurnal Sistem Informasi","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Text Classification for Analysing Indonesian People's Opinion Sentiment for Covid-19 Vaccination\",\"authors\":\"Eka Miranda, Veronica Gabriella, Sriyanda Afrida Wahyudi, Jennifer Chai\",\"doi\":\"10.32520/stmsi.v12i2.2759\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this study is to implement text mining for sentiment analysis of Indonesian public opinion on COVID-19 vaccination on Twitter social media using text classification techniques Support Vector Machine (SVM) and Random Forest. The research begins with crawling data from Twitter from September 2021 to October 2021; data cleansing; text translation into English; data preprocessing using NTLK performed with and without the lemmatization process; sentiment analysis using TextBlob; distribution of training and testing data with the Hold-Out method of 70:30 and 80:20; hyperparameter tuning with GridSearchCV; text classification with SVM and Random Forest; and testing the classification results by calculating Accuracy, Precision, Recall, F-Measure based on confusion matrix. The results show that text classification Random Forest consistently has a higher accuracy rate than SVM with the highest accuracy value of 90,59% and most of the sentiments indicate neutral to the COVID-19 vaccination program.\",\"PeriodicalId\":32357,\"journal\":{\"name\":\"Jurnal Sistem Informasi\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Sistem Informasi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32520/stmsi.v12i2.2759\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Sistem Informasi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32520/stmsi.v12i2.2759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是利用文本分类技术支持向量机(SVM)和随机森林,在Twitter社交媒体上实施文本挖掘,对印度尼西亚公众对COVID-19疫苗接种的意见进行情绪分析。这项研究从2021年9月到2021年10月从Twitter上抓取数据开始;数据清理;文本英译;使用NTLK进行数据预处理,有或没有词序化过程;基于TextBlob的情感分析;以70:30和80:20的Hold-Out方式分配训练和测试数据;使用GridSearchCV进行超参数调优;基于SVM和随机森林的文本分类;并基于混淆矩阵计算准确率、精密度、召回率、F-Measure来检验分类结果。结果表明,文本分类随机森林的准确率始终高于支持向量机,准确率最高为90%和59%,大多数情绪对COVID-19疫苗接种计划表示中立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Text Classification for Analysing Indonesian People's Opinion Sentiment for Covid-19 Vaccination
The purpose of this study is to implement text mining for sentiment analysis of Indonesian public opinion on COVID-19 vaccination on Twitter social media using text classification techniques Support Vector Machine (SVM) and Random Forest. The research begins with crawling data from Twitter from September 2021 to October 2021; data cleansing; text translation into English; data preprocessing using NTLK performed with and without the lemmatization process; sentiment analysis using TextBlob; distribution of training and testing data with the Hold-Out method of 70:30 and 80:20; hyperparameter tuning with GridSearchCV; text classification with SVM and Random Forest; and testing the classification results by calculating Accuracy, Precision, Recall, F-Measure based on confusion matrix. The results show that text classification Random Forest consistently has a higher accuracy rate than SVM with the highest accuracy value of 90,59% and most of the sentiments indicate neutral to the COVID-19 vaccination program.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
12
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信