完全耦合McKean-Vlasov正向向后SDEs的后验误差估计

IF 2.3 2区 数学 Q1 MATHEMATICS, APPLIED
Christoph Reisinger, Wolfgang Stockinger, Yufei Zhang
{"title":"完全耦合McKean-Vlasov正向向后SDEs的后验误差估计","authors":"Christoph Reisinger, Wolfgang Stockinger, Yufei Zhang","doi":"10.1093/imanum/drad060","DOIUrl":null,"url":null,"abstract":"Abstract Fully coupled McKean–Vlasov forward-backward stochastic differential equations (MV-FBSDEs) arise naturally from large population optimization problems. Judging the quality of given numerical solutions for MV-FBSDEs, which usually require Picard iterations and approximations of nested conditional expectations, is typically difficult. This paper proposes an a posteriori error estimator to quantify the $L^2$-approximation error of an arbitrarily generated approximation on a time grid. We establish that the error estimator is equivalent to the global approximation error between the given numerical solution and the solution of a forward Euler discretized MV-FBSDE. A crucial and challenging step in the analysis is the proof of stability of this Euler approximation to the MV-FBSDE, which is of independent interest. We further demonstrate that, for sufficiently fine time grids, the accuracy of numerical solutions for solving the continuous MV-FBSDE can also be measured by the error estimator. The error estimates justify the use of residual-based algorithms for solving MV-FBSDEs. Numerical experiments for MV-FBSDEs arising from mean field control and games confirm the effectiveness and practical applicability of the error estimator.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"41 1","pages":"0"},"PeriodicalIF":2.3000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"<i>A posteriori</i> error estimates for fully coupled McKean–Vlasov forward-backward SDEs\",\"authors\":\"Christoph Reisinger, Wolfgang Stockinger, Yufei Zhang\",\"doi\":\"10.1093/imanum/drad060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Fully coupled McKean–Vlasov forward-backward stochastic differential equations (MV-FBSDEs) arise naturally from large population optimization problems. Judging the quality of given numerical solutions for MV-FBSDEs, which usually require Picard iterations and approximations of nested conditional expectations, is typically difficult. This paper proposes an a posteriori error estimator to quantify the $L^2$-approximation error of an arbitrarily generated approximation on a time grid. We establish that the error estimator is equivalent to the global approximation error between the given numerical solution and the solution of a forward Euler discretized MV-FBSDE. A crucial and challenging step in the analysis is the proof of stability of this Euler approximation to the MV-FBSDE, which is of independent interest. We further demonstrate that, for sufficiently fine time grids, the accuracy of numerical solutions for solving the continuous MV-FBSDE can also be measured by the error estimator. The error estimates justify the use of residual-based algorithms for solving MV-FBSDEs. Numerical experiments for MV-FBSDEs arising from mean field control and games confirm the effectiveness and practical applicability of the error estimator.\",\"PeriodicalId\":56295,\"journal\":{\"name\":\"IMA Journal of Numerical Analysis\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IMA Journal of Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/imanum/drad060\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/imanum/drad060","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

完全耦合McKean-Vlasov正倒向随机微分方程(MV-FBSDEs)是求解大种群优化问题的自然方法。MV-FBSDEs通常需要Picard迭代和嵌套条件期望的近似,判断给定数值解的质量通常是困难的。本文提出了一种后验误差估计器,用于量化时间网格上任意生成的逼近的L^2逼近误差。我们建立了误差估计量等价于给定数值解与正演欧拉离散MV-FBSDE解之间的全局逼近误差。分析中的一个关键和具有挑战性的步骤是证明这个欧拉近似对MV-FBSDE的稳定性,这是一个独立的兴趣。我们进一步证明,对于足够精细的时间网格,求解连续MV-FBSDE的数值解的精度也可以通过误差估计器来测量。误差估计证明了使用基于残差的算法求解MV-FBSDEs是正确的。对平均场控制和博弈引起的MV-FBSDEs进行了数值实验,验证了误差估计器的有效性和实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A posteriori error estimates for fully coupled McKean–Vlasov forward-backward SDEs
Abstract Fully coupled McKean–Vlasov forward-backward stochastic differential equations (MV-FBSDEs) arise naturally from large population optimization problems. Judging the quality of given numerical solutions for MV-FBSDEs, which usually require Picard iterations and approximations of nested conditional expectations, is typically difficult. This paper proposes an a posteriori error estimator to quantify the $L^2$-approximation error of an arbitrarily generated approximation on a time grid. We establish that the error estimator is equivalent to the global approximation error between the given numerical solution and the solution of a forward Euler discretized MV-FBSDE. A crucial and challenging step in the analysis is the proof of stability of this Euler approximation to the MV-FBSDE, which is of independent interest. We further demonstrate that, for sufficiently fine time grids, the accuracy of numerical solutions for solving the continuous MV-FBSDE can also be measured by the error estimator. The error estimates justify the use of residual-based algorithms for solving MV-FBSDEs. Numerical experiments for MV-FBSDEs arising from mean field control and games confirm the effectiveness and practical applicability of the error estimator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信