无真空的一维水动力Gross-Pitaevskii方程的全局时适性

IF 1.7 3区 数学 Q2 MATHEMATICS, APPLIED
Robert Wegner
{"title":"无真空的一维水动力Gross-Pitaevskii方程的全局时适性","authors":"Robert Wegner","doi":"10.1007/s00033-023-02089-4","DOIUrl":null,"url":null,"abstract":"Abstract We establish global-in-time well-posedness of the one-dimensional hydrodynamic Gross–Pitaevskii equations in the absence of vacuum in $$(1 + H^s) \\times H^{s-1}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo> <mml:msup> <mml:mi>H</mml:mi> <mml:mi>s</mml:mi> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>×</mml:mo> <mml:msup> <mml:mi>H</mml:mi> <mml:mrow> <mml:mi>s</mml:mi> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> </mml:math> with $$s \\ge 1$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>s</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:math> . We achieve this by a reduction via the Madelung transform to the previous global-in-time well-posedness result for the Gross–Pitaevskii equation in Koch and Liao (Adv Math 377, 2021; Adv Math 420, 2023). Our core result is a local bilipschitz equivalence of the relevant function spaces, which enables the transfer of results between the two equations.","PeriodicalId":54401,"journal":{"name":"Zeitschrift fur Angewandte Mathematik und Physik","volume":"21 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global-in-time well-posedness of the one-dimensional hydrodynamic Gross–Pitaevskii equations without vacuum\",\"authors\":\"Robert Wegner\",\"doi\":\"10.1007/s00033-023-02089-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We establish global-in-time well-posedness of the one-dimensional hydrodynamic Gross–Pitaevskii equations in the absence of vacuum in $$(1 + H^s) \\\\times H^{s-1}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo> <mml:msup> <mml:mi>H</mml:mi> <mml:mi>s</mml:mi> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>×</mml:mo> <mml:msup> <mml:mi>H</mml:mi> <mml:mrow> <mml:mi>s</mml:mi> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> </mml:math> with $$s \\\\ge 1$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>s</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:math> . We achieve this by a reduction via the Madelung transform to the previous global-in-time well-posedness result for the Gross–Pitaevskii equation in Koch and Liao (Adv Math 377, 2021; Adv Math 420, 2023). Our core result is a local bilipschitz equivalence of the relevant function spaces, which enables the transfer of results between the two equations.\",\"PeriodicalId\":54401,\"journal\":{\"name\":\"Zeitschrift fur Angewandte Mathematik und Physik\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zeitschrift fur Angewandte Mathematik und Physik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00033-023-02089-4\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift fur Angewandte Mathematik und Physik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00033-023-02089-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

摘要建立了无真空条件下$$(1 + H^s) \times H^{s-1}$$ (1 + H s) × H s - 1 ($$s \ge 1$$ s≥1)下一维水动力Gross-Pitaevskii方程的全局时适性。我们通过Madelung变换将之前的Gross-Pitaevskii方程的全局时间适定性结果简化到Koch和Liao (Adv Math 377, 2021;Adv数学420,2023)。我们的核心结果是相关函数空间的局部bilipschitz等价,它使结果在两个方程之间传递。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Global-in-time well-posedness of the one-dimensional hydrodynamic Gross–Pitaevskii equations without vacuum

Global-in-time well-posedness of the one-dimensional hydrodynamic Gross–Pitaevskii equations without vacuum
Abstract We establish global-in-time well-posedness of the one-dimensional hydrodynamic Gross–Pitaevskii equations in the absence of vacuum in $$(1 + H^s) \times H^{s-1}$$ ( 1 + H s ) × H s - 1 with $$s \ge 1$$ s 1 . We achieve this by a reduction via the Madelung transform to the previous global-in-time well-posedness result for the Gross–Pitaevskii equation in Koch and Liao (Adv Math 377, 2021; Adv Math 420, 2023). Our core result is a local bilipschitz equivalence of the relevant function spaces, which enables the transfer of results between the two equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
10.00%
发文量
216
审稿时长
6-12 weeks
期刊介绍: The Journal of Applied Mathematics and Physics (ZAMP) publishes papers of high scientific quality in Fluid Mechanics, Mechanics of Solids and Differential Equations/Applied Mathematics. A paper will be considered for publication if at least one of the following conditions is fulfilled: The paper includes results or discussions which can be considered original and highly interesting. The paper presents a new method. The author reviews a problem or a class of problems with such profound insight that further research is encouraged. The readers of ZAMP will find not only articles in their own special field but also original work in neighbouring domains. This will lead to an exchange of ideas; concepts and methods which have proven to be successful in one field may well be useful to other areas. ZAMP attempts to publish articles reasonably quickly. Longer papers are published in the section "Original Papers", shorter ones may appear under "Brief Reports" where publication is particularly rapid. The journal includes a "Book Review" section and provides information on activities (such as upcoming symposia, meetings or special courses) which are of interest to its readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信