A(1)和A(2)类型的Fock空间比较

Q3 Mathematics
Matthew Fayers
{"title":"A(1)和A(2)类型的Fock空间比较","authors":"Matthew Fayers","doi":"10.5802/alco.300","DOIUrl":null,"url":null,"abstract":"We compare the canonical bases of level-1 quantised Fock spaces in affine types A (1) and A (2) , showing how to derive the canonical basis in type A 2n (2) from the the canonical basis in type A n (1) in certain weight spaces. In particular, we derive an explicit formula for the canonical basis in extremal weight spaces, which correspond to RoCK blocks of double covers of symmetric groups. In a forthcoming paper with Kleshchev and Morotti we will use this formula to find the decomposition numbers for RoCK blocks of double covers with abelian defect.","PeriodicalId":36046,"journal":{"name":"Algebraic Combinatorics","volume":"40 17","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparing Fock spaces in types A (1) and A (2) \",\"authors\":\"Matthew Fayers\",\"doi\":\"10.5802/alco.300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We compare the canonical bases of level-1 quantised Fock spaces in affine types A (1) and A (2) , showing how to derive the canonical basis in type A 2n (2) from the the canonical basis in type A n (1) in certain weight spaces. In particular, we derive an explicit formula for the canonical basis in extremal weight spaces, which correspond to RoCK blocks of double covers of symmetric groups. In a forthcoming paper with Kleshchev and Morotti we will use this formula to find the decomposition numbers for RoCK blocks of double covers with abelian defect.\",\"PeriodicalId\":36046,\"journal\":{\"name\":\"Algebraic Combinatorics\",\"volume\":\"40 17\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebraic Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/alco.300\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/alco.300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

我们比较了仿射类型A(1)和A(2)的一级量子化Fock空间的正则基,展示了如何从某些权重空间中A (n(1)型的正则基推导出A (2n(2)型的正则基。特别地,我们导出了对应于对称群的双盖的RoCK块的极值权空间中正则基的显式公式。在与Kleshchev和Morotti合著的一篇即将发表的论文中,我们将使用该公式求出具有阿贝尔缺陷的双盖岩块的分解数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparing Fock spaces in types A (1) and A (2)
We compare the canonical bases of level-1 quantised Fock spaces in affine types A (1) and A (2) , showing how to derive the canonical basis in type A 2n (2) from the the canonical basis in type A n (1) in certain weight spaces. In particular, we derive an explicit formula for the canonical basis in extremal weight spaces, which correspond to RoCK blocks of double covers of symmetric groups. In a forthcoming paper with Kleshchev and Morotti we will use this formula to find the decomposition numbers for RoCK blocks of double covers with abelian defect.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebraic Combinatorics
Algebraic Combinatorics Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.30
自引率
0.00%
发文量
45
审稿时长
51 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信