纤维增强聚合物中纤维-基质界面表征的方法和模型综述

IF 16.8 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Sina AhmadvashAghbash, Ignaas Verpoest, Yentl Swolfs, Mahoor Mehdikhani
{"title":"纤维增强聚合物中纤维-基质界面表征的方法和模型综述","authors":"Sina AhmadvashAghbash, Ignaas Verpoest, Yentl Swolfs, Mahoor Mehdikhani","doi":"10.1080/09506608.2023.2265701","DOIUrl":null,"url":null,"abstract":"ABSTRACTThe fibre–matrix interface represents a vital element in the development and characterisation of fibre-reinforced polymers (FRPs). Extensive ranges of interfacial properties exist for different composite systems, measured with various interface characterisation techniques. However, the discrepancies in interfacial properties of similar fibre–matrix systems have not been fully addressed or explained. In this review, first, the interface-forming mechanisms of FRPs are established. Following a discourse on three primary factors that affect the fibre–matrix interface, the four main interface characterisation methods (single-fibre fragmentation, single-fibre pull-out, microbond and fibre push-in/-out tests) are described and critically reviewed. These sections review various detailed data reduction schemes, numerical approaches, accompanying challenges and sources of reported scatter. Finally, following the assessment of several infrequent test methods, comprehensive conclusions, prospective directions and intriguing extensions to the field are provided.KEYWORDS: Carbon fibreglass fibreepoxythermoplasticinterface characterisationinterfacial shear strengthinterfacial fracture toughnessinterfacial friction coefficient Disclosure statementNo potential conflict of interest was reported by the author(s).List of abbreviations and symbols45FBT=45° fibre bundle tensile testAE=Acoustic emissionAFM=Atomic force microscopyANN=Artificial neural networkBAM=Federal institute for materials research and testingBEM=Boundary element methodCF=Carbon fibreCFRP=Carbon fibre-reinforced polymerCKT=Cottrell–Kelly–Tyson modelCMC=Ceramic matrix compositesCNT=Carbon nanotubesCT=Computed tomographyCTE=Coefficient of thermal expansionCZM=Cohesive zone modelDEM=Discrete element methodEPZ=Embedded process zone modelFBG=Fibre Bragg gratingFE(M)=Finite element (method)FRP=Fibre-reinforced polymerGF=Glass fibreGFRP=Glass fibre-reinforced polymerHM=High modulus carbon fibreIFFT=Interfacial fracture toughnessIFNS=Interfacial normal (radial) strengthIFSS=Interfacial shear strengthIFSSapp=Apparent interfacial shear strengthILSS=Interlaminar shear strengthIMD=Intermediate modulusLRS=Laser Raman spectroscopyMB (MBT)=Microbond testMFFT=Multi-fibre fragmentation testMRS=Micro-Raman spectroscopyPA=PolyamidePC=PolycarbonatePEEK=Polyether ether ketonePEI=PolyetherimidePP=PolypropylenePPS=Polyphenylene sulphideSCF=Stress (or strain) concentration factorSEM=Scanning electron microscopySERR=Strain energy release rateSFFT=Single-fibre fragmentation testSLM=Shear-lag modelTFBT=Transverse fibre bundle tensile testTP=ThermoplasticAemb=Embedded areaa=Crack lengthbi=Interface effective thicknessda=Change in crack lengthdC=Change in compliancedf=Fibre diameterdU=Energy summation proposed by Marshall and OliverdUe=Change of the elastic energy inside the fibredUf=Work of friction in the interfacedUGi=Debonding energy associated with the new debonded areadUl=Potential energy of the loading systemdUm=Change in matrix elastic energyE1=Longitudinal Young's modulus of the model compositeEf(Ef1)=Axial Young's modulus of the fibreEm=Matrix Young's modulusET=Transverse Young's modulus of the fibreF−δ=Force–displacementFb=Initial post-debonding forceFcat=Catastrophic failure loadFd=Debonding forceFfric.,max=Maximum frictional forceFmax=Maximum loadFs=Shear forceG=Strain energy release rate (fracture toughness)Gi=Interfacial fracture toughnessGint.=Shear modulus of the interfaceGm=Matrix shear modulusGprop.=Strain energy release rate for debond propagationGicII=Interfacial mode II fracture toughnessH=Height in contact angleK=Slope of the force-displacement curveKf=Fibre free length stiffnessKi=Cohesive stiffnessL=Droplet lengthl=Fibre length, axial location of the crack frontlavg=Arithmetic mean of the fragment lengths at saturationlc=Critical fibre lengthlcat=Fibre embedded length shorter than lmax,catld=Debond lengthlemb=Embedded fibre lengthlemb,c=Critical embedded lengthlfree=Fibre free-lengthlm=The point where the results of FEM, variational mechanics and SLM convergelmax=Maximum fragment lengthlmax,cat=Maximum fibre length beyond which catastrophic debonding does not occurlmax,friction=Maximum fibre length to surpass the frictional dissipation of energym=A parameter acquired from the slope of the u against Fs2 plot in push-in testsP=Applied loadPc=Critical load at the debond initiationPd=Debonding loadqo=Normal pressure exerted on the fibre due to the matrix shrinkage during cureR=Axial distance at which τm=0Req=Equivalent cylinder radiusRi=Indentation position to the fibre centreS0=Slope of the linear region in a push-in load-displacement curveTf=Tensile force on fibreTg=Glass transition temperatureTm=Tensile force on matrixUθ=Deformation in θ direction in a cylindrical coordinate system (rθz)u=Total recorded displacement throughout the push-in testuep=Elastoplastic indentation of the fibre surfaceuf=Fibre surface displacement due to the fibre compressionVdroplet=Droplet volumeVf=Fibre volume fractionVm=Matrix volume fractionUθ=Deformation in θ direction in a cylindrical coordinate system (rθz)WA=Work required to separate the two neighbouring molecular layers of the fibre and the matrix, Work of adhesionw=Thickness of a push-out specimen (equal to the fibre length)w2=Cross section area of a square specimenz=Fibre axial axisz∗=The z-coordinate where the stress is evaluatedαfL=Axial thermal expansion coefficients of the fibreαfT=Transverse thermal expansion coefficients of the fibreαm=Thermal expansion coefficient of the matrixβ=Shear-lag parameterβCox=Cox shear-lag parameterβgeom.=Geometrical correction factorβNayfeh=Nayfeh shear-lag parameterΔEelastic=Elastic deformation energy of the fibre, matrix and bending of the sampleΔEfriction=Work of frictionΔEplastic=Plastic deformation energy of fibre, matrix, and interfaceΔT=Temperature differenceδ=Separation in traction-separationϵ=Applied strain, Fibre axial strain distributionsϵf=Fibre strainϵm=Matrix strainθ=Contact anglek=Frictional stress transfer rateλ=Effective normal displacement between the contacting surfaces required for their separationμi=Interfacial friction coefficientνf=Fibre Poisson's ratioνfL=Axial Poisson's ratios of the fibreνfT=Transverse Poisson's ratios of the fibreνm=Poisson's ratio of the Matrixσ0=Net axial stress, Axial stress at the minimum cross-section of the specimenσc1=Longitudinal stress in a model compositeσd=Debonding initiation stress, Adhesion pressureσf=Fibre failure strengthσi=Interfacial tensile stressσn=Normal stressσrr=Radial stress in variational mechanicsσrrcritical=Critical radial stressσult=Critical radial stress value at the onset of the debond initiationσ¯z=Cross-sectional average axial stress of fibreτy=Matrix shear yield strengthτapp=Apparent interfacial shear strengthτd=Local interfacial shear strengthτf=Interfacial frictional sliding stress (post-debond frictional shear stress)τi=Interfacial shear stressτic=Interfacial shear strengthτm=Shear stress of the matrixτmax=Maximum interfacial shear stressτmaxact=Actual interfacial shear strengthτmaxLRS=Maximum interfacial shear stress obtained from laser Raman spectroscopyτmaxSLM=Interfacial shear strength obtained with the shear-lag modelτmax,ths=Maximum residual shear stressτrz=Interfacial shear stress in variational mechanicsτthermal=Residual thermal stressesτult=Ultimate interfacial shear strengthAdditional informationFundingThe effort that has been put into this research is within the framework of the HyFiSyn project, which has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 765881. M. Mehdikhani would like to acknowledge his FWO Postdoc Fellowship, project ToughImage (1263421N).","PeriodicalId":14427,"journal":{"name":"International Materials Reviews","volume":"86 6","pages":"0"},"PeriodicalIF":16.8000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Methods and models for fibre–matrix interface characterisation in fibre-reinforced polymers: a review\",\"authors\":\"Sina AhmadvashAghbash, Ignaas Verpoest, Yentl Swolfs, Mahoor Mehdikhani\",\"doi\":\"10.1080/09506608.2023.2265701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACTThe fibre–matrix interface represents a vital element in the development and characterisation of fibre-reinforced polymers (FRPs). Extensive ranges of interfacial properties exist for different composite systems, measured with various interface characterisation techniques. However, the discrepancies in interfacial properties of similar fibre–matrix systems have not been fully addressed or explained. In this review, first, the interface-forming mechanisms of FRPs are established. Following a discourse on three primary factors that affect the fibre–matrix interface, the four main interface characterisation methods (single-fibre fragmentation, single-fibre pull-out, microbond and fibre push-in/-out tests) are described and critically reviewed. These sections review various detailed data reduction schemes, numerical approaches, accompanying challenges and sources of reported scatter. Finally, following the assessment of several infrequent test methods, comprehensive conclusions, prospective directions and intriguing extensions to the field are provided.KEYWORDS: Carbon fibreglass fibreepoxythermoplasticinterface characterisationinterfacial shear strengthinterfacial fracture toughnessinterfacial friction coefficient Disclosure statementNo potential conflict of interest was reported by the author(s).List of abbreviations and symbols45FBT=45° fibre bundle tensile testAE=Acoustic emissionAFM=Atomic force microscopyANN=Artificial neural networkBAM=Federal institute for materials research and testingBEM=Boundary element methodCF=Carbon fibreCFRP=Carbon fibre-reinforced polymerCKT=Cottrell–Kelly–Tyson modelCMC=Ceramic matrix compositesCNT=Carbon nanotubesCT=Computed tomographyCTE=Coefficient of thermal expansionCZM=Cohesive zone modelDEM=Discrete element methodEPZ=Embedded process zone modelFBG=Fibre Bragg gratingFE(M)=Finite element (method)FRP=Fibre-reinforced polymerGF=Glass fibreGFRP=Glass fibre-reinforced polymerHM=High modulus carbon fibreIFFT=Interfacial fracture toughnessIFNS=Interfacial normal (radial) strengthIFSS=Interfacial shear strengthIFSSapp=Apparent interfacial shear strengthILSS=Interlaminar shear strengthIMD=Intermediate modulusLRS=Laser Raman spectroscopyMB (MBT)=Microbond testMFFT=Multi-fibre fragmentation testMRS=Micro-Raman spectroscopyPA=PolyamidePC=PolycarbonatePEEK=Polyether ether ketonePEI=PolyetherimidePP=PolypropylenePPS=Polyphenylene sulphideSCF=Stress (or strain) concentration factorSEM=Scanning electron microscopySERR=Strain energy release rateSFFT=Single-fibre fragmentation testSLM=Shear-lag modelTFBT=Transverse fibre bundle tensile testTP=ThermoplasticAemb=Embedded areaa=Crack lengthbi=Interface effective thicknessda=Change in crack lengthdC=Change in compliancedf=Fibre diameterdU=Energy summation proposed by Marshall and OliverdUe=Change of the elastic energy inside the fibredUf=Work of friction in the interfacedUGi=Debonding energy associated with the new debonded areadUl=Potential energy of the loading systemdUm=Change in matrix elastic energyE1=Longitudinal Young's modulus of the model compositeEf(Ef1)=Axial Young's modulus of the fibreEm=Matrix Young's modulusET=Transverse Young's modulus of the fibreF−δ=Force–displacementFb=Initial post-debonding forceFcat=Catastrophic failure loadFd=Debonding forceFfric.,max=Maximum frictional forceFmax=Maximum loadFs=Shear forceG=Strain energy release rate (fracture toughness)Gi=Interfacial fracture toughnessGint.=Shear modulus of the interfaceGm=Matrix shear modulusGprop.=Strain energy release rate for debond propagationGicII=Interfacial mode II fracture toughnessH=Height in contact angleK=Slope of the force-displacement curveKf=Fibre free length stiffnessKi=Cohesive stiffnessL=Droplet lengthl=Fibre length, axial location of the crack frontlavg=Arithmetic mean of the fragment lengths at saturationlc=Critical fibre lengthlcat=Fibre embedded length shorter than lmax,catld=Debond lengthlemb=Embedded fibre lengthlemb,c=Critical embedded lengthlfree=Fibre free-lengthlm=The point where the results of FEM, variational mechanics and SLM convergelmax=Maximum fragment lengthlmax,cat=Maximum fibre length beyond which catastrophic debonding does not occurlmax,friction=Maximum fibre length to surpass the frictional dissipation of energym=A parameter acquired from the slope of the u against Fs2 plot in push-in testsP=Applied loadPc=Critical load at the debond initiationPd=Debonding loadqo=Normal pressure exerted on the fibre due to the matrix shrinkage during cureR=Axial distance at which τm=0Req=Equivalent cylinder radiusRi=Indentation position to the fibre centreS0=Slope of the linear region in a push-in load-displacement curveTf=Tensile force on fibreTg=Glass transition temperatureTm=Tensile force on matrixUθ=Deformation in θ direction in a cylindrical coordinate system (rθz)u=Total recorded displacement throughout the push-in testuep=Elastoplastic indentation of the fibre surfaceuf=Fibre surface displacement due to the fibre compressionVdroplet=Droplet volumeVf=Fibre volume fractionVm=Matrix volume fractionUθ=Deformation in θ direction in a cylindrical coordinate system (rθz)WA=Work required to separate the two neighbouring molecular layers of the fibre and the matrix, Work of adhesionw=Thickness of a push-out specimen (equal to the fibre length)w2=Cross section area of a square specimenz=Fibre axial axisz∗=The z-coordinate where the stress is evaluatedαfL=Axial thermal expansion coefficients of the fibreαfT=Transverse thermal expansion coefficients of the fibreαm=Thermal expansion coefficient of the matrixβ=Shear-lag parameterβCox=Cox shear-lag parameterβgeom.=Geometrical correction factorβNayfeh=Nayfeh shear-lag parameterΔEelastic=Elastic deformation energy of the fibre, matrix and bending of the sampleΔEfriction=Work of frictionΔEplastic=Plastic deformation energy of fibre, matrix, and interfaceΔT=Temperature differenceδ=Separation in traction-separationϵ=Applied strain, Fibre axial strain distributionsϵf=Fibre strainϵm=Matrix strainθ=Contact anglek=Frictional stress transfer rateλ=Effective normal displacement between the contacting surfaces required for their separationμi=Interfacial friction coefficientνf=Fibre Poisson's ratioνfL=Axial Poisson's ratios of the fibreνfT=Transverse Poisson's ratios of the fibreνm=Poisson's ratio of the Matrixσ0=Net axial stress, Axial stress at the minimum cross-section of the specimenσc1=Longitudinal stress in a model compositeσd=Debonding initiation stress, Adhesion pressureσf=Fibre failure strengthσi=Interfacial tensile stressσn=Normal stressσrr=Radial stress in variational mechanicsσrrcritical=Critical radial stressσult=Critical radial stress value at the onset of the debond initiationσ¯z=Cross-sectional average axial stress of fibreτy=Matrix shear yield strengthτapp=Apparent interfacial shear strengthτd=Local interfacial shear strengthτf=Interfacial frictional sliding stress (post-debond frictional shear stress)τi=Interfacial shear stressτic=Interfacial shear strengthτm=Shear stress of the matrixτmax=Maximum interfacial shear stressτmaxact=Actual interfacial shear strengthτmaxLRS=Maximum interfacial shear stress obtained from laser Raman spectroscopyτmaxSLM=Interfacial shear strength obtained with the shear-lag modelτmax,ths=Maximum residual shear stressτrz=Interfacial shear stress in variational mechanicsτthermal=Residual thermal stressesτult=Ultimate interfacial shear strengthAdditional informationFundingThe effort that has been put into this research is within the framework of the HyFiSyn project, which has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 765881. M. Mehdikhani would like to acknowledge his FWO Postdoc Fellowship, project ToughImage (1263421N).\",\"PeriodicalId\":14427,\"journal\":{\"name\":\"International Materials Reviews\",\"volume\":\"86 6\",\"pages\":\"0\"},\"PeriodicalIF\":16.8000,\"publicationDate\":\"2023-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Materials Reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/09506608.2023.2265701\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Materials Reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09506608.2023.2265701","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要纤维-基质界面是纤维增强聚合物(frp)发展和表征的重要因素。不同的复合材料体系存在着广泛的界面特性,可以用各种界面表征技术来测量。然而,类似纤维基质系统的界面特性差异尚未得到充分解决或解释。本文首先建立了frp的接口形成机制。在讨论了影响纤维基质界面的三个主要因素之后,对四种主要的界面表征方法(单纤维碎裂、单纤维拉出、微键和纤维推入/推出测试)进行了描述和严格审查。这些部分回顾了各种详细的数据简化方案、数值方法、伴随的挑战和报告散射的来源。最后,在对几种不常用的测试方法进行评估后,给出了全面的结论、前景方向和有趣的扩展。关键词:碳纤维;玻璃纤维;聚氧热塑性;;界面特性;;缩写和符号表45fbt =45°纤维束拉伸testAE=声发射afm =原子力显微镜yann =人工神经网络bam =联邦材料研究与测试研究所bem =边界元法cf =碳纤维frp =碳纤维增强聚合物ckt = cottell - kelely - tyson模型cmc =陶瓷基复合材料cnt =碳纳米管ct =计算机层析成像cte =热膨胀系数czm =内聚区模型dem =离散元法depz =嵌入工艺区modelFBG=纤维布拉格光栅fe (M)=有限元法FRP=纤维增强聚合物mergf =玻璃纤维gfrp =玻璃纤维增强聚合物hm =高模量碳纤维ifft =界面断裂韧性essifns =界面法向(径向)强度ifss =界面剪切强度ifssapp =界面表观剪切强度ilss =层间剪切强度imd =中间模量lrs =激光拉曼光谱ymb (MBT)=微键测试mfft =多纤维碎裂测试mrs =微拉曼光谱ypa =聚酰胺idepc =聚碳酸酯peek =聚醚醚酮pei =聚醚酰亚胺pp =聚丙烯pps =聚苯硫醚escf =应力(或应变)浓度因子sem =扫描电子显微镜serr =应变能释放率fft =单纤维断裂测试slm =剪切滞后模型tfbt =横向纤维束拉伸测试tp =热塑性测试aemb =嵌入面积aa=裂纹长度bi=界面有效厚度da=裂纹长度变化dc =柔度变化f=纤维直径du =能量总和提出马歇尔和OliverdUe =改变fibredUf内部的弹性能量=工作摩擦interfacedUGi =脱胶能源与新脱层areadUl =势能的加载systemdUm弹性energyE1 = =改变矩阵模型的纵向杨氏模量compositeEf (Ef1) = fibreEm =的轴向杨氏模量矩阵杨氏modulusET横杨氏模量= fibreF−δ= Force-displacementFb =初始post-debonding forceFcat =灾难性故障loadFd =脱胶forceFfric。,max=最大摩擦力efmax =最大载荷fs =剪切力g =应变能释放率(断裂韧性)Gi=界面断裂韧性gint。=界面剪切模量egm =矩阵剪切模量usgprop。 =脱粘传播应变能释放率icii =界面模式II断裂韧性h =接触角高度k =力-位移曲线斜率kf =纤维自由长度刚度ki =内聚刚度l=液滴长度l=纤维长度裂缝前缘轴向位置lavg=饱和时碎片长度的算术平均值lc=临界纤维长度cat=纤维嵌入长度小于lmax, catd =脱粘长度=嵌入纤维长度,c=临界嵌入长度llfree =纤维自由长度lm=有限元计算结果变分力学和SLM的集合max=最大碎片长度lmax,cat=不发生灾难性脱粘的最大纤维长度max,friction=超过摩擦耗散的最大纤维长度=从推入试验中u对Fs2曲线的斜率获得的参数sp =施加的载荷pc =脱粘开始时的临界载荷pd =脱粘载荷qo=由于基体收缩而施加在纤维上的正压力rer =轴向距离τm=0Req=等效圆柱体半径ri =纤维中心的压痕位置res0 =推入载荷-位移曲线中线性区域的斜率tf =纤维上的拉力tg =玻璃化温度retm =对基体的拉力xu θ=柱坐标系(rθz)中θ方向的变形u=整个推入试验中记录的总位移ep=纤维表面的弹塑性压痕f=由于纤维压缩引起的纤维表面位移vdroplet =液滴体积vf =纤维体积fractionVm=矩阵体积分数uθ =柱面坐标系中θ方向上的变形(rθz)WA=分离纤维和矩阵两个相邻分子层所需的功,粘接功w=推出试样厚度(等于纤维长度)w2=正方形试样的横截面积z=纤维轴向轴向z * =计算应力的z坐标α fl =纤维轴向热膨胀系数α ft =纤维横向热膨胀系数αm=基体热膨胀系数β=剪切滞后参数βCox=Cox剪切滞后参数βgeom。=几何修正系数βNayfeh=Nayfeh剪切滞后parameterΔEelastic=纤维、基体和弯曲的弹性变形能sampleΔEfriction=功frictionΔEplastic=纤维、基体和塑性变形能interfaceΔT=温差δ=牵引分离δ=施加应变,纤维轴向应变distributionsϵf=纤维strainϵm=基体应变θ=接触角=摩擦应力传递率λ=分离所需接触面之间的有效法向位移μi=界面摩擦系数νf=纤维泊松比ν fl =纤维的轴向泊松比ν ft =纤维的横向泊松比m=基体的泊松比σ0=净轴向应力,试件最小截面处的轴向应力σc1=模型复合材料的纵向应力σd=脱粘起裂应力;粘接压力σf=纤维破坏强度σi=界面拉应力σn=法向应力σrr=变分力学中的径向应力σ rcritical=临界径向应力σult=剥离开始时的临界径向应力值σ¯z=纤维截面平均轴向应力τy=基体剪切屈服强度τapp=界面表观剪切强度τd=局部界面剪切强度τf=界面摩擦滑动应力(剥离后摩擦剪切应力)τi=界面剪切应力τic=界面剪切强度τm=基体剪切应力τmax=最大界面剪切应力τmaxact=实际界面剪切强度τ maxlrs =激光拉曼光谱得到的最大界面剪切应力τ maxslm =剪切滞后模型得到的界面剪切强度τmax,th =最大残余剪切应力τrz=变分力学中的界面剪切应力τthermal=残余热应力τult=最终界面剪切强度附加信息HyFiSyn项目已获得欧盟地平线2020研究和创新计划(Marie Skłodowska-Curie资助协议No. 765881)的资助。M. Mehdikhani感谢他的两个博士后奖学金,项目ToughImage (1263421N)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Methods and models for fibre–matrix interface characterisation in fibre-reinforced polymers: a review
ABSTRACTThe fibre–matrix interface represents a vital element in the development and characterisation of fibre-reinforced polymers (FRPs). Extensive ranges of interfacial properties exist for different composite systems, measured with various interface characterisation techniques. However, the discrepancies in interfacial properties of similar fibre–matrix systems have not been fully addressed or explained. In this review, first, the interface-forming mechanisms of FRPs are established. Following a discourse on three primary factors that affect the fibre–matrix interface, the four main interface characterisation methods (single-fibre fragmentation, single-fibre pull-out, microbond and fibre push-in/-out tests) are described and critically reviewed. These sections review various detailed data reduction schemes, numerical approaches, accompanying challenges and sources of reported scatter. Finally, following the assessment of several infrequent test methods, comprehensive conclusions, prospective directions and intriguing extensions to the field are provided.KEYWORDS: Carbon fibreglass fibreepoxythermoplasticinterface characterisationinterfacial shear strengthinterfacial fracture toughnessinterfacial friction coefficient Disclosure statementNo potential conflict of interest was reported by the author(s).List of abbreviations and symbols45FBT=45° fibre bundle tensile testAE=Acoustic emissionAFM=Atomic force microscopyANN=Artificial neural networkBAM=Federal institute for materials research and testingBEM=Boundary element methodCF=Carbon fibreCFRP=Carbon fibre-reinforced polymerCKT=Cottrell–Kelly–Tyson modelCMC=Ceramic matrix compositesCNT=Carbon nanotubesCT=Computed tomographyCTE=Coefficient of thermal expansionCZM=Cohesive zone modelDEM=Discrete element methodEPZ=Embedded process zone modelFBG=Fibre Bragg gratingFE(M)=Finite element (method)FRP=Fibre-reinforced polymerGF=Glass fibreGFRP=Glass fibre-reinforced polymerHM=High modulus carbon fibreIFFT=Interfacial fracture toughnessIFNS=Interfacial normal (radial) strengthIFSS=Interfacial shear strengthIFSSapp=Apparent interfacial shear strengthILSS=Interlaminar shear strengthIMD=Intermediate modulusLRS=Laser Raman spectroscopyMB (MBT)=Microbond testMFFT=Multi-fibre fragmentation testMRS=Micro-Raman spectroscopyPA=PolyamidePC=PolycarbonatePEEK=Polyether ether ketonePEI=PolyetherimidePP=PolypropylenePPS=Polyphenylene sulphideSCF=Stress (or strain) concentration factorSEM=Scanning electron microscopySERR=Strain energy release rateSFFT=Single-fibre fragmentation testSLM=Shear-lag modelTFBT=Transverse fibre bundle tensile testTP=ThermoplasticAemb=Embedded areaa=Crack lengthbi=Interface effective thicknessda=Change in crack lengthdC=Change in compliancedf=Fibre diameterdU=Energy summation proposed by Marshall and OliverdUe=Change of the elastic energy inside the fibredUf=Work of friction in the interfacedUGi=Debonding energy associated with the new debonded areadUl=Potential energy of the loading systemdUm=Change in matrix elastic energyE1=Longitudinal Young's modulus of the model compositeEf(Ef1)=Axial Young's modulus of the fibreEm=Matrix Young's modulusET=Transverse Young's modulus of the fibreF−δ=Force–displacementFb=Initial post-debonding forceFcat=Catastrophic failure loadFd=Debonding forceFfric.,max=Maximum frictional forceFmax=Maximum loadFs=Shear forceG=Strain energy release rate (fracture toughness)Gi=Interfacial fracture toughnessGint.=Shear modulus of the interfaceGm=Matrix shear modulusGprop.=Strain energy release rate for debond propagationGicII=Interfacial mode II fracture toughnessH=Height in contact angleK=Slope of the force-displacement curveKf=Fibre free length stiffnessKi=Cohesive stiffnessL=Droplet lengthl=Fibre length, axial location of the crack frontlavg=Arithmetic mean of the fragment lengths at saturationlc=Critical fibre lengthlcat=Fibre embedded length shorter than lmax,catld=Debond lengthlemb=Embedded fibre lengthlemb,c=Critical embedded lengthlfree=Fibre free-lengthlm=The point where the results of FEM, variational mechanics and SLM convergelmax=Maximum fragment lengthlmax,cat=Maximum fibre length beyond which catastrophic debonding does not occurlmax,friction=Maximum fibre length to surpass the frictional dissipation of energym=A parameter acquired from the slope of the u against Fs2 plot in push-in testsP=Applied loadPc=Critical load at the debond initiationPd=Debonding loadqo=Normal pressure exerted on the fibre due to the matrix shrinkage during cureR=Axial distance at which τm=0Req=Equivalent cylinder radiusRi=Indentation position to the fibre centreS0=Slope of the linear region in a push-in load-displacement curveTf=Tensile force on fibreTg=Glass transition temperatureTm=Tensile force on matrixUθ=Deformation in θ direction in a cylindrical coordinate system (rθz)u=Total recorded displacement throughout the push-in testuep=Elastoplastic indentation of the fibre surfaceuf=Fibre surface displacement due to the fibre compressionVdroplet=Droplet volumeVf=Fibre volume fractionVm=Matrix volume fractionUθ=Deformation in θ direction in a cylindrical coordinate system (rθz)WA=Work required to separate the two neighbouring molecular layers of the fibre and the matrix, Work of adhesionw=Thickness of a push-out specimen (equal to the fibre length)w2=Cross section area of a square specimenz=Fibre axial axisz∗=The z-coordinate where the stress is evaluatedαfL=Axial thermal expansion coefficients of the fibreαfT=Transverse thermal expansion coefficients of the fibreαm=Thermal expansion coefficient of the matrixβ=Shear-lag parameterβCox=Cox shear-lag parameterβgeom.=Geometrical correction factorβNayfeh=Nayfeh shear-lag parameterΔEelastic=Elastic deformation energy of the fibre, matrix and bending of the sampleΔEfriction=Work of frictionΔEplastic=Plastic deformation energy of fibre, matrix, and interfaceΔT=Temperature differenceδ=Separation in traction-separationϵ=Applied strain, Fibre axial strain distributionsϵf=Fibre strainϵm=Matrix strainθ=Contact anglek=Frictional stress transfer rateλ=Effective normal displacement between the contacting surfaces required for their separationμi=Interfacial friction coefficientνf=Fibre Poisson's ratioνfL=Axial Poisson's ratios of the fibreνfT=Transverse Poisson's ratios of the fibreνm=Poisson's ratio of the Matrixσ0=Net axial stress, Axial stress at the minimum cross-section of the specimenσc1=Longitudinal stress in a model compositeσd=Debonding initiation stress, Adhesion pressureσf=Fibre failure strengthσi=Interfacial tensile stressσn=Normal stressσrr=Radial stress in variational mechanicsσrrcritical=Critical radial stressσult=Critical radial stress value at the onset of the debond initiationσ¯z=Cross-sectional average axial stress of fibreτy=Matrix shear yield strengthτapp=Apparent interfacial shear strengthτd=Local interfacial shear strengthτf=Interfacial frictional sliding stress (post-debond frictional shear stress)τi=Interfacial shear stressτic=Interfacial shear strengthτm=Shear stress of the matrixτmax=Maximum interfacial shear stressτmaxact=Actual interfacial shear strengthτmaxLRS=Maximum interfacial shear stress obtained from laser Raman spectroscopyτmaxSLM=Interfacial shear strength obtained with the shear-lag modelτmax,ths=Maximum residual shear stressτrz=Interfacial shear stress in variational mechanicsτthermal=Residual thermal stressesτult=Ultimate interfacial shear strengthAdditional informationFundingThe effort that has been put into this research is within the framework of the HyFiSyn project, which has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 765881. M. Mehdikhani would like to acknowledge his FWO Postdoc Fellowship, project ToughImage (1263421N).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Materials Reviews
International Materials Reviews 工程技术-材料科学:综合
CiteScore
28.50
自引率
0.00%
发文量
21
审稿时长
6 months
期刊介绍: International Materials Reviews (IMR) is a comprehensive publication that provides in-depth coverage of the current state and advancements in various materials technologies. With contributions from internationally respected experts, IMR offers a thorough analysis of the subject matter. It undergoes rigorous evaluation by committees in the United States and United Kingdom for ensuring the highest quality of content. Published by Sage on behalf of ASM International and the Institute of Materials, Minerals and Mining (UK), IMR is a valuable resource for professionals in the field. It is available online through Sage's platform, facilitating convenient access to its wealth of information. Jointly produced by ASM International and the Institute of Materials, Minerals and Mining (UK), IMR focuses on technologies that impact industries dealing with metals, structural ceramics, composite materials, and electronic materials. Its coverage spans from practical applications to theoretical and practical aspects of material extraction, production, fabrication, properties, and behavior.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信