关于分级(1,r)-理想

IF 0.5 Q3 MATHEMATICS
Nassima Guennach, Najib Mahdou, Unsal Tekir, Suat Koc
{"title":"关于分级(1,r)-理想","authors":"Nassima Guennach, Najib Mahdou, Unsal Tekir, Suat Koc","doi":"10.1142/s1793557123502224","DOIUrl":null,"url":null,"abstract":"Let [Formula: see text] be a group with identity element [Formula: see text] and [Formula: see text] be a commutative [Formula: see text]-graded ring with nonzero unity [Formula: see text]. In this paper, we introduce the graded version of [Formula: see text]-ideals which is a generalization of graded [Formula: see text]-ideals. A proper graded ideal [Formula: see text] of [Formula: see text] is said to be a graded [Formula: see text]-ideal if whenever [Formula: see text] for some nonunits homogeneous elements [Formula: see text], then either [Formula: see text] or [Formula: see text]. We investigate some basic properties of graded [Formula: see text]-ideals. We show that if [Formula: see text] admits a graded [Formula: see text]-ideal that is not a graded [Formula: see text]-ideal, then [Formula: see text] is a [Formula: see text]-graded local ring. Also, we give a method to construct graded [Formula: see text]-ideals that are not graded [Formula: see text]-ideals. Furthermore, we prove that [Formula: see text] is a graded total quotient ring if and only if every proper graded ideal of [Formula: see text] is graded [Formula: see text]-ideal and also we present a counterpart of prime avoidance lemma for graded [Formula: see text]-ideals. Finally, an idea is given about some graded [Formula: see text]-ideals of the ring of fractions and the idealization.","PeriodicalId":45737,"journal":{"name":"Asian-European Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Graded (1,<i>r</i>)-Ideals\",\"authors\":\"Nassima Guennach, Najib Mahdou, Unsal Tekir, Suat Koc\",\"doi\":\"10.1142/s1793557123502224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let [Formula: see text] be a group with identity element [Formula: see text] and [Formula: see text] be a commutative [Formula: see text]-graded ring with nonzero unity [Formula: see text]. In this paper, we introduce the graded version of [Formula: see text]-ideals which is a generalization of graded [Formula: see text]-ideals. A proper graded ideal [Formula: see text] of [Formula: see text] is said to be a graded [Formula: see text]-ideal if whenever [Formula: see text] for some nonunits homogeneous elements [Formula: see text], then either [Formula: see text] or [Formula: see text]. We investigate some basic properties of graded [Formula: see text]-ideals. We show that if [Formula: see text] admits a graded [Formula: see text]-ideal that is not a graded [Formula: see text]-ideal, then [Formula: see text] is a [Formula: see text]-graded local ring. Also, we give a method to construct graded [Formula: see text]-ideals that are not graded [Formula: see text]-ideals. Furthermore, we prove that [Formula: see text] is a graded total quotient ring if and only if every proper graded ideal of [Formula: see text] is graded [Formula: see text]-ideal and also we present a counterpart of prime avoidance lemma for graded [Formula: see text]-ideals. Finally, an idea is given about some graded [Formula: see text]-ideals of the ring of fractions and the idealization.\",\"PeriodicalId\":45737,\"journal\":{\"name\":\"Asian-European Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian-European Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793557123502224\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian-European Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1793557123502224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设[公式:见文]是一个具有单位元的群[公式:见文],[公式:见文]是一个具有非零单位的交换[公式:见文]-分级环[公式:见文]。本文引入了[公式:见文]-理想的分级形式,它是[公式:见文]-理想的分级推广。[公式:见文]的适当分级理想[公式:见文]被称为分级理想[公式:见文],如果当[公式:见文]对于一些非单位齐次元素[公式:见文],则[公式:见文]或[公式:见文]。我们研究了分级[公式:见原文]理想的一些基本性质。我们证明,如果[公式:见文]承认一个不是分级[公式:见文]-理想的分级[公式:见文]-理想,那么[公式:见文]是一个[公式:见文]-分级局部环。此外,我们给出了一种方法来构造分级的[公式:见文本]-理想,而不是分级的[公式:见文本]-理想。进一步,我们证明了[公式:见文]是一个分级全商环当且仅当[公式:见文]的每个适当分级理想都是分级[公式:见文]-理想,并给出了分级[公式:见文]-理想的素数回避引理的一个对应物。最后,给出了分数环的理想及其理想化的一些分级[公式:见文]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Graded (1,r)-Ideals
Let [Formula: see text] be a group with identity element [Formula: see text] and [Formula: see text] be a commutative [Formula: see text]-graded ring with nonzero unity [Formula: see text]. In this paper, we introduce the graded version of [Formula: see text]-ideals which is a generalization of graded [Formula: see text]-ideals. A proper graded ideal [Formula: see text] of [Formula: see text] is said to be a graded [Formula: see text]-ideal if whenever [Formula: see text] for some nonunits homogeneous elements [Formula: see text], then either [Formula: see text] or [Formula: see text]. We investigate some basic properties of graded [Formula: see text]-ideals. We show that if [Formula: see text] admits a graded [Formula: see text]-ideal that is not a graded [Formula: see text]-ideal, then [Formula: see text] is a [Formula: see text]-graded local ring. Also, we give a method to construct graded [Formula: see text]-ideals that are not graded [Formula: see text]-ideals. Furthermore, we prove that [Formula: see text] is a graded total quotient ring if and only if every proper graded ideal of [Formula: see text] is graded [Formula: see text]-ideal and also we present a counterpart of prime avoidance lemma for graded [Formula: see text]-ideals. Finally, an idea is given about some graded [Formula: see text]-ideals of the ring of fractions and the idealization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
12.50%
发文量
169
期刊介绍: Asian-European Journal of Mathematics is an international journal which is devoted to original research in the field of pure and applied mathematics. The aim of the journal is to provide a medium by which new ideas can be discussed among researchers from diverse fields in mathematics. It publishes high quality research papers in the fields of contemporary pure and applied mathematics with a broad range of topics including algebra, analysis, topology, geometry, functional analysis, number theory, differential equations, operational research, combinatorics, theoretical statistics and probability, theoretical computer science and logic. Although the journal focuses on the original research articles, it also welcomes survey articles and short notes. All papers will be peer-reviewed within approximately four months.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信