{"title":"COVID-19大流行期间超额死亡率估算和可视化工作流程","authors":"Garyfallos Konstantinoudis, Virgilio Gómez-Rubio, Michela Cameletti, Monica Pirani, Gianluca Baio, Marta Blangiardo","doi":"10.32614/rj-2023-055","DOIUrl":null,"url":null,"abstract":"COVID-19 related deaths estimates underestimate the pandemic burden on mortality because they suffer from completeness and accuracy issues. Excess mortality is a popular alternative, as it compares the observed number of deaths versus the number that would be expected if the pandemic did not occur. The expected number of deaths depends on population trends, temperature, and spatio-temporal patterns. In addition to this, high geographical resolution is required to examine within country trends and the effectiveness of the different public health policies. In this tutorial, we propose a workflow using R for estimating and visualising excess mortality at high geographical resolution. We show a case study estimating excess deaths during 2020 in Italy. The proposed workflow is fast to implement and allows for combining different models and presenting aggregated results based on factors such as age, sex, and spatial location. This makes it a particularly powerful and appealing workflow for online monitoring of the pandemic burden and timely policy making.","PeriodicalId":51285,"journal":{"name":"R Journal","volume":"55 s63","pages":"0"},"PeriodicalIF":2.3000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Workflow for Estimating and Visualising Excess Mortality During the COVID-19 Pandemic\",\"authors\":\"Garyfallos Konstantinoudis, Virgilio Gómez-Rubio, Michela Cameletti, Monica Pirani, Gianluca Baio, Marta Blangiardo\",\"doi\":\"10.32614/rj-2023-055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"COVID-19 related deaths estimates underestimate the pandemic burden on mortality because they suffer from completeness and accuracy issues. Excess mortality is a popular alternative, as it compares the observed number of deaths versus the number that would be expected if the pandemic did not occur. The expected number of deaths depends on population trends, temperature, and spatio-temporal patterns. In addition to this, high geographical resolution is required to examine within country trends and the effectiveness of the different public health policies. In this tutorial, we propose a workflow using R for estimating and visualising excess mortality at high geographical resolution. We show a case study estimating excess deaths during 2020 in Italy. The proposed workflow is fast to implement and allows for combining different models and presenting aggregated results based on factors such as age, sex, and spatial location. This makes it a particularly powerful and appealing workflow for online monitoring of the pandemic burden and timely policy making.\",\"PeriodicalId\":51285,\"journal\":{\"name\":\"R Journal\",\"volume\":\"55 s63\",\"pages\":\"0\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"R Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32614/rj-2023-055\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"R Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32614/rj-2023-055","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A Workflow for Estimating and Visualising Excess Mortality During the COVID-19 Pandemic
COVID-19 related deaths estimates underestimate the pandemic burden on mortality because they suffer from completeness and accuracy issues. Excess mortality is a popular alternative, as it compares the observed number of deaths versus the number that would be expected if the pandemic did not occur. The expected number of deaths depends on population trends, temperature, and spatio-temporal patterns. In addition to this, high geographical resolution is required to examine within country trends and the effectiveness of the different public health policies. In this tutorial, we propose a workflow using R for estimating and visualising excess mortality at high geographical resolution. We show a case study estimating excess deaths during 2020 in Italy. The proposed workflow is fast to implement and allows for combining different models and presenting aggregated results based on factors such as age, sex, and spatial location. This makes it a particularly powerful and appealing workflow for online monitoring of the pandemic burden and timely policy making.
R JournalCOMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-STATISTICS & PROBABILITY
CiteScore
2.70
自引率
0.00%
发文量
40
审稿时长
>12 weeks
期刊介绍:
The R Journal is the open access, refereed journal of the R project for statistical computing. It features short to medium length articles covering topics that should be of interest to users or developers of R.
The R Journal intends to reach a wide audience and have a thorough review process. Papers are expected to be reasonably short, clearly written, not too technical, and of course focused on R. Authors of refereed articles should take care to:
- put their contribution in context, in particular discuss related R functions or packages;
- explain the motivation for their contribution;
- provide code examples that are reproducible.