{"title":"自传式错误记忆对神经振荡复杂性的影响","authors":"Mohsen Shabani, Masoumeh Sadeghi, Javad Salehi, Hamidreza Namazi, Reza Khosrowabadi","doi":"10.1142/s0218348x23501165","DOIUrl":null,"url":null,"abstract":"Memory is an imperfect record of past experiences that enables us to operate in the present and think about the future. Although various factors may give a chance to a false recollection of information that may not occur. These false memories are formed based on various neuro-cognitive processes the underlying mechanism still needs to be well understood. Considering the extended searching when no memory trace is found, we hypothesized that the self-similarities in the brain activations must be higher during false memory recalls. Therefore, a language-free task based on autobiographical brand images was designed using the Deese–Roediger–McDermott (DRM) paradigm. The task was then tested on 24 healthy participants while the brain activities during the test were recorded using a 32-channel EEG system. Subsequently, the self-similarities in the brain activity pattern were estimated by taking the fractal dimension (FD) of the cleaned EEG data. Statistical analysis showed a significant increase in complexity during false memory recalls as compared to true memory recalls prominent in the frontal regions. Interestingly, the EEG findings were consistent in both genders and significantly correlated with subjects’ accuracy rates and reaction times (RTs) to recall.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of autobiographical false memory on the complexity of neural oscillations\",\"authors\":\"Mohsen Shabani, Masoumeh Sadeghi, Javad Salehi, Hamidreza Namazi, Reza Khosrowabadi\",\"doi\":\"10.1142/s0218348x23501165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Memory is an imperfect record of past experiences that enables us to operate in the present and think about the future. Although various factors may give a chance to a false recollection of information that may not occur. These false memories are formed based on various neuro-cognitive processes the underlying mechanism still needs to be well understood. Considering the extended searching when no memory trace is found, we hypothesized that the self-similarities in the brain activations must be higher during false memory recalls. Therefore, a language-free task based on autobiographical brand images was designed using the Deese–Roediger–McDermott (DRM) paradigm. The task was then tested on 24 healthy participants while the brain activities during the test were recorded using a 32-channel EEG system. Subsequently, the self-similarities in the brain activity pattern were estimated by taking the fractal dimension (FD) of the cleaned EEG data. Statistical analysis showed a significant increase in complexity during false memory recalls as compared to true memory recalls prominent in the frontal regions. Interestingly, the EEG findings were consistent in both genders and significantly correlated with subjects’ accuracy rates and reaction times (RTs) to recall.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218348x23501165\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218348x23501165","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Effect of autobiographical false memory on the complexity of neural oscillations
Memory is an imperfect record of past experiences that enables us to operate in the present and think about the future. Although various factors may give a chance to a false recollection of information that may not occur. These false memories are formed based on various neuro-cognitive processes the underlying mechanism still needs to be well understood. Considering the extended searching when no memory trace is found, we hypothesized that the self-similarities in the brain activations must be higher during false memory recalls. Therefore, a language-free task based on autobiographical brand images was designed using the Deese–Roediger–McDermott (DRM) paradigm. The task was then tested on 24 healthy participants while the brain activities during the test were recorded using a 32-channel EEG system. Subsequently, the self-similarities in the brain activity pattern were estimated by taking the fractal dimension (FD) of the cleaned EEG data. Statistical analysis showed a significant increase in complexity during false memory recalls as compared to true memory recalls prominent in the frontal regions. Interestingly, the EEG findings were consistent in both genders and significantly correlated with subjects’ accuracy rates and reaction times (RTs) to recall.