氨苯砜治疗对糖尿病和非糖尿病汉森氏病患者高铁血红蛋白和某些氧化应激标志物的影响

Q4 Biochemistry, Genetics and Molecular Biology
Ravneet Kaur, Sarabjot Singh Anant, Kuldip Singh
{"title":"氨苯砜治疗对糖尿病和非糖尿病汉森氏病患者高铁血红蛋白和某些氧化应激标志物的影响","authors":"Ravneet Kaur, Sarabjot Singh Anant, Kuldip Singh","doi":"10.51248/.v43i5.3642","DOIUrl":null,"url":null,"abstract":"Introduction: Hansen’s (leprosy) disease is a worldwide healthcare problem, caused by Mycobacterium leprae. Dapsone (a synthetic sulfone), is an antibacterial agent, has both anti-inflammatory and immunomodulatory properties for the treatment of all forms of leprosy. The goal of the study is to evaluate the effect of dapsone on HbA1C, methemoglobin and certain oxidative stress markers in young patients suffering with Hansen’s disease with and without diabetes.
 
 Methodology: The study was conducted on 70 subjects in age group of 20-45 years. These subjects include 20 healthy subjects (Group 1); 35 non-diabetic Hansen’s patients on dapsone (100mg/day) treatment (Group 2) and 15 diabetic Hansen’s disease on dapsone (100 mg/day) (Group 3). The fasting blood samples were drawn for the evaluation of methemoglobin, HbA1C, malondialdehyde, reduced glutathione and total antioxidant activity from all the groups.
 
 Results: A significant increase in methemoglobin and malondialdehyde was noted in Group 2 and 3 patients with reference to healthy control subjects (Group 1) while the levels of reduced glutathione, HbA1C and total antioxidant activity were notably reduced in investigated Group 2 and 3 compared to Group 1. A similar trend of significant increase in methemoglobin and malondialdehyde levels in Group 3 with respect to Group 2 and significant fall in glutathione and total antioxidant activity and nominal fall in HbA1C was recorded in Group 3 with respect to Group 2.
 
 Conclusion: Aforesaid observations suggested that oxidative stress induced in diabetic and non-diabetic Hansen’s disease patients treated with dapsone due to alteration in Met. Hb, MDA, reduced glutathione and total antioxidant activity levels might be accountable for the etiology of various diseases like cancer, arthritis, and cardiovascular events. A comprehensive study with clinical trials inclusive of complete oxidative stress markers, antioxidant enzymes, pattern of dietary intake with antioxidant vitamin supplements alone and in combination might be beneficial.","PeriodicalId":35655,"journal":{"name":"Biomedicine (India)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact on methemoglobin and certain oxidative stress markers in diabetic and non-diabetic Hansen’s disease patients with dapsone treatment\",\"authors\":\"Ravneet Kaur, Sarabjot Singh Anant, Kuldip Singh\",\"doi\":\"10.51248/.v43i5.3642\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction: Hansen’s (leprosy) disease is a worldwide healthcare problem, caused by Mycobacterium leprae. Dapsone (a synthetic sulfone), is an antibacterial agent, has both anti-inflammatory and immunomodulatory properties for the treatment of all forms of leprosy. The goal of the study is to evaluate the effect of dapsone on HbA1C, methemoglobin and certain oxidative stress markers in young patients suffering with Hansen’s disease with and without diabetes.
 
 Methodology: The study was conducted on 70 subjects in age group of 20-45 years. These subjects include 20 healthy subjects (Group 1); 35 non-diabetic Hansen’s patients on dapsone (100mg/day) treatment (Group 2) and 15 diabetic Hansen’s disease on dapsone (100 mg/day) (Group 3). The fasting blood samples were drawn for the evaluation of methemoglobin, HbA1C, malondialdehyde, reduced glutathione and total antioxidant activity from all the groups.
 
 Results: A significant increase in methemoglobin and malondialdehyde was noted in Group 2 and 3 patients with reference to healthy control subjects (Group 1) while the levels of reduced glutathione, HbA1C and total antioxidant activity were notably reduced in investigated Group 2 and 3 compared to Group 1. A similar trend of significant increase in methemoglobin and malondialdehyde levels in Group 3 with respect to Group 2 and significant fall in glutathione and total antioxidant activity and nominal fall in HbA1C was recorded in Group 3 with respect to Group 2.
 
 Conclusion: Aforesaid observations suggested that oxidative stress induced in diabetic and non-diabetic Hansen’s disease patients treated with dapsone due to alteration in Met. Hb, MDA, reduced glutathione and total antioxidant activity levels might be accountable for the etiology of various diseases like cancer, arthritis, and cardiovascular events. A comprehensive study with clinical trials inclusive of complete oxidative stress markers, antioxidant enzymes, pattern of dietary intake with antioxidant vitamin supplements alone and in combination might be beneficial.\",\"PeriodicalId\":35655,\"journal\":{\"name\":\"Biomedicine (India)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedicine (India)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51248/.v43i5.3642\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedicine (India)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51248/.v43i5.3642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

简介:麻风病是由麻风分枝杆菌引起的全球性卫生保健问题。氨苯砜(一种合成砜)是一种抗菌剂,具有抗炎和免疫调节特性,可用于治疗所有形式的麻风病。该研究的目的是评估氨苯砜对合并和不合并糖尿病的年轻汉森病患者的HbA1C、高铁血红蛋白和某些氧化应激标志物的影响。& # x0D;方法:研究对象70名,年龄在20-45岁之间。健康受试者20名(第一组);35例非糖尿病Hansen 's患者给予氨苯砜(100mg/d)治疗(2组),15例糖尿病Hansen 's患者给予氨苯砜(100mg/d)治疗(3组)。取空腹血,评估各组高铁血红蛋白、糖化血红蛋白、丙二醛、还原性谷胱甘肽和总抗氧化活性。 & # x0D;结果:与健康对照组(1组)相比,2组和3组高铁血红蛋白和丙二醛显著升高,2组和3组还原型谷胱甘肽水平、糖化血红蛋白水平和总抗氧化活性显著降低。3组高铁血红蛋白和丙二醛水平较2组显著升高,谷胱甘肽和总抗氧化活性显著下降,HbA1C较2组显著下降。 & # x0D;结论:上述观察提示氨苯砜治疗的糖尿病和非糖尿病汉森病患者的氧化应激是由于Met的改变引起的。血红蛋白、丙二醛、减少谷胱甘肽和总抗氧化活性水平可能是各种疾病的病因,如癌症、关节炎和心血管事件。一项全面的临床试验研究包括完整的氧化应激标志物,抗氧化酶,饮食摄入模式与抗氧化维生素补充剂单独或联合可能是有益的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact on methemoglobin and certain oxidative stress markers in diabetic and non-diabetic Hansen’s disease patients with dapsone treatment
Introduction: Hansen’s (leprosy) disease is a worldwide healthcare problem, caused by Mycobacterium leprae. Dapsone (a synthetic sulfone), is an antibacterial agent, has both anti-inflammatory and immunomodulatory properties for the treatment of all forms of leprosy. The goal of the study is to evaluate the effect of dapsone on HbA1C, methemoglobin and certain oxidative stress markers in young patients suffering with Hansen’s disease with and without diabetes. Methodology: The study was conducted on 70 subjects in age group of 20-45 years. These subjects include 20 healthy subjects (Group 1); 35 non-diabetic Hansen’s patients on dapsone (100mg/day) treatment (Group 2) and 15 diabetic Hansen’s disease on dapsone (100 mg/day) (Group 3). The fasting blood samples were drawn for the evaluation of methemoglobin, HbA1C, malondialdehyde, reduced glutathione and total antioxidant activity from all the groups. Results: A significant increase in methemoglobin and malondialdehyde was noted in Group 2 and 3 patients with reference to healthy control subjects (Group 1) while the levels of reduced glutathione, HbA1C and total antioxidant activity were notably reduced in investigated Group 2 and 3 compared to Group 1. A similar trend of significant increase in methemoglobin and malondialdehyde levels in Group 3 with respect to Group 2 and significant fall in glutathione and total antioxidant activity and nominal fall in HbA1C was recorded in Group 3 with respect to Group 2. Conclusion: Aforesaid observations suggested that oxidative stress induced in diabetic and non-diabetic Hansen’s disease patients treated with dapsone due to alteration in Met. Hb, MDA, reduced glutathione and total antioxidant activity levels might be accountable for the etiology of various diseases like cancer, arthritis, and cardiovascular events. A comprehensive study with clinical trials inclusive of complete oxidative stress markers, antioxidant enzymes, pattern of dietary intake with antioxidant vitamin supplements alone and in combination might be beneficial.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomedicine (India)
Biomedicine (India) Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
自引率
0.00%
发文量
153
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信