塔里木盆地古城地区鹰山组不同沉积微相碳酸盐岩岩石物理特征及其控制因素

IF 1.6 3区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS
Jiaqing Wang, Jixin Deng, Hui Xia, Longlong Yan
{"title":"塔里木盆地古城地区鹰山组不同沉积微相碳酸盐岩岩石物理特征及其控制因素","authors":"Jiaqing Wang, Jixin Deng, Hui Xia, Longlong Yan","doi":"10.1093/jge/gxad087","DOIUrl":null,"url":null,"abstract":"Abstract Understanding the influence of geological characteristics on rock physics properties is crucial for accurately recognizing the relationship between rock physics variation and reservoir characteristics. Unlike the conventional rock species, the rock physics properties of the deep carbonate rocks in the third member of Yingshan Formation (Ying-III Member) in Gucheng area, Tarim Basin are relatively more complex. To address this problem, we investigated the rock physics characteristics and controlling factors of different sedimentary microfacies samples, combined with sedimentological analysis and rock physics experiments. The results show that the sedimentary environment affects the lithology and pore structure by controlling the properties of the primitive rock and early diagenesis. Dolomitized shoal microfacies and shoal top dolomitic flat microfacies primarily form crystalline dolomite and siliceous dolomite, with pores consisting of inter-crystalline pores, dissolution pores, and cracks. Inter-shoal dolomitic flat microfacies develops silty dolomite, with only a few inter-crystalline pores and cracks. Middle-high energy shoal microfacies and inter-shoal sea microfacies develop tight calcarenite and micritic limestone. Samples with similar mineral composition have relatively consistent density values and acoustic properties. Soft pores, such as micro cracks, have a significant impact on the effective pressure and acoustic wave velocity, velocity and velocity ratio, and velocity and porosity relationships. The research can show a new approach for the rock physics characteristics of deep carbonate reservoirs under geological background constraints, as well as the rock physics basis for seismic prediction of Ying-III Member reservoir.","PeriodicalId":54820,"journal":{"name":"Journal of Geophysics and Engineering","volume":"27 6","pages":"0"},"PeriodicalIF":1.6000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rock physics characteristics and their control factors of carbonate in different sedimentary microfacies of the Yingshan Formation, Gucheng Area, Tarim Basin\",\"authors\":\"Jiaqing Wang, Jixin Deng, Hui Xia, Longlong Yan\",\"doi\":\"10.1093/jge/gxad087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Understanding the influence of geological characteristics on rock physics properties is crucial for accurately recognizing the relationship between rock physics variation and reservoir characteristics. Unlike the conventional rock species, the rock physics properties of the deep carbonate rocks in the third member of Yingshan Formation (Ying-III Member) in Gucheng area, Tarim Basin are relatively more complex. To address this problem, we investigated the rock physics characteristics and controlling factors of different sedimentary microfacies samples, combined with sedimentological analysis and rock physics experiments. The results show that the sedimentary environment affects the lithology and pore structure by controlling the properties of the primitive rock and early diagenesis. Dolomitized shoal microfacies and shoal top dolomitic flat microfacies primarily form crystalline dolomite and siliceous dolomite, with pores consisting of inter-crystalline pores, dissolution pores, and cracks. Inter-shoal dolomitic flat microfacies develops silty dolomite, with only a few inter-crystalline pores and cracks. Middle-high energy shoal microfacies and inter-shoal sea microfacies develop tight calcarenite and micritic limestone. Samples with similar mineral composition have relatively consistent density values and acoustic properties. Soft pores, such as micro cracks, have a significant impact on the effective pressure and acoustic wave velocity, velocity and velocity ratio, and velocity and porosity relationships. The research can show a new approach for the rock physics characteristics of deep carbonate reservoirs under geological background constraints, as well as the rock physics basis for seismic prediction of Ying-III Member reservoir.\",\"PeriodicalId\":54820,\"journal\":{\"name\":\"Journal of Geophysics and Engineering\",\"volume\":\"27 6\",\"pages\":\"0\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysics and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/jge/gxad087\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysics and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jge/gxad087","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

了解地质特征对岩石物理性质的影响是准确认识岩石物理变化与储层特征关系的关键。塔里木盆地古城地区鹰山组三段(鹰三段)深层碳酸盐岩的岩石物理性质相对复杂,与常规岩石种类不同。为解决这一问题,结合沉积学分析和岩石物理实验,研究了不同沉积微相样品的岩石物理特征及其控制因素。结果表明,沉积环境通过控制原始岩和早期成岩作用的性质,影响了岩性和孔隙结构。白云化浅滩微相和滩顶白云质平原微相主要形成结晶白云岩和硅质白云岩,孔隙由晶间孔、溶蚀孔和裂缝组成。滩间白云岩平坦微相发育粉砂质白云岩,仅有少量晶间孔隙和裂缝。中高能滩微相和滩间海微相发育致密的泥晶灰岩和泥晶灰岩。具有相似矿物成分的样品具有相对一致的密度值和声学特性。微裂缝等软孔隙对有效压力与声波速度、速度与速度比、速度与孔隙度关系等均有显著影响。该研究为研究地质背景约束下深部碳酸盐岩储层岩石物理特征提供了新思路,为莺三段储层地震预测提供了岩石物理依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rock physics characteristics and their control factors of carbonate in different sedimentary microfacies of the Yingshan Formation, Gucheng Area, Tarim Basin
Abstract Understanding the influence of geological characteristics on rock physics properties is crucial for accurately recognizing the relationship between rock physics variation and reservoir characteristics. Unlike the conventional rock species, the rock physics properties of the deep carbonate rocks in the third member of Yingshan Formation (Ying-III Member) in Gucheng area, Tarim Basin are relatively more complex. To address this problem, we investigated the rock physics characteristics and controlling factors of different sedimentary microfacies samples, combined with sedimentological analysis and rock physics experiments. The results show that the sedimentary environment affects the lithology and pore structure by controlling the properties of the primitive rock and early diagenesis. Dolomitized shoal microfacies and shoal top dolomitic flat microfacies primarily form crystalline dolomite and siliceous dolomite, with pores consisting of inter-crystalline pores, dissolution pores, and cracks. Inter-shoal dolomitic flat microfacies develops silty dolomite, with only a few inter-crystalline pores and cracks. Middle-high energy shoal microfacies and inter-shoal sea microfacies develop tight calcarenite and micritic limestone. Samples with similar mineral composition have relatively consistent density values and acoustic properties. Soft pores, such as micro cracks, have a significant impact on the effective pressure and acoustic wave velocity, velocity and velocity ratio, and velocity and porosity relationships. The research can show a new approach for the rock physics characteristics of deep carbonate reservoirs under geological background constraints, as well as the rock physics basis for seismic prediction of Ying-III Member reservoir.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysics and Engineering
Journal of Geophysics and Engineering 工程技术-地球化学与地球物理
CiteScore
2.50
自引率
21.40%
发文量
87
审稿时长
4 months
期刊介绍: Journal of Geophysics and Engineering aims to promote research and developments in geophysics and related areas of engineering. It has a predominantly applied science and engineering focus, but solicits and accepts high-quality contributions in all earth-physics disciplines, including geodynamics, natural and controlled-source seismology, oil, gas and mineral exploration, petrophysics and reservoir geophysics. The journal covers those aspects of engineering that are closely related to geophysics, or on the targets and problems that geophysics addresses. Typically, this is engineering focused on the subsurface, particularly petroleum engineering, rock mechanics, geophysical software engineering, drilling technology, remote sensing, instrumentation and sensor design.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信