优化和设计具有二元结果的多臂多阶段随机对照试验的工具

IF 3.2 2区 数学 Q1 SOCIAL SCIENCES, MATHEMATICAL METHODS
Babak Choodari-Oskooei, Daniel J. Bratton, Mahesh K. B. Parmar
{"title":"优化和设计具有二元结果的多臂多阶段随机对照试验的工具","authors":"Babak Choodari-Oskooei, Daniel J. Bratton, Mahesh K. B. Parmar","doi":"10.1177/1536867x231196295","DOIUrl":null,"url":null,"abstract":"We introduce two commands, nstagebin and nstagebinopt, that can be used to facilitate the design of multiarm multistage (MAMS) trials with binary outcomes. MAMS designs are a class of efficient and adaptive randomized clinical trials that have successfully been used in many disease areas, including cancer, tuberculosis, maternal health, COVID-19, and surgery. The nstagebinopt command finds a class of efficient “admissible” designs based on an optimality criterion using a systematic search procedure. The nstagebin command calculates the stagewise sample sizes, trial timelines, and overall operating characteristics of MAMS designs with binary outcomes. Both commands allow the use of Dunnett’s correction to account for multiple testing. We also use the ROSSINI 2 MAMS design, an ongoing MAMS trial in surgical wound infection, to illustrate the capabilities of both commands. The new commands facilitate the design of MAMS trials with binary outcomes where more than one research question can be addressed under one protocol.","PeriodicalId":51171,"journal":{"name":"Stata Journal","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Facilities for optimizing and designing multiarm multistage (MAMS) randomized controlled trials with binary outcomes\",\"authors\":\"Babak Choodari-Oskooei, Daniel J. Bratton, Mahesh K. B. Parmar\",\"doi\":\"10.1177/1536867x231196295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce two commands, nstagebin and nstagebinopt, that can be used to facilitate the design of multiarm multistage (MAMS) trials with binary outcomes. MAMS designs are a class of efficient and adaptive randomized clinical trials that have successfully been used in many disease areas, including cancer, tuberculosis, maternal health, COVID-19, and surgery. The nstagebinopt command finds a class of efficient “admissible” designs based on an optimality criterion using a systematic search procedure. The nstagebin command calculates the stagewise sample sizes, trial timelines, and overall operating characteristics of MAMS designs with binary outcomes. Both commands allow the use of Dunnett’s correction to account for multiple testing. We also use the ROSSINI 2 MAMS design, an ongoing MAMS trial in surgical wound infection, to illustrate the capabilities of both commands. The new commands facilitate the design of MAMS trials with binary outcomes where more than one research question can be addressed under one protocol.\",\"PeriodicalId\":51171,\"journal\":{\"name\":\"Stata Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stata Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/1536867x231196295\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOCIAL SCIENCES, MATHEMATICAL METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stata Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/1536867x231196295","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了两个命令,nstagebin和nstagebinopt,可以用来促进设计具有二元结果的多臂多阶段(MAMS)试验。MAMS设计是一类高效、适应性强的随机临床试验,已成功应用于许多疾病领域,包括癌症、结核病、孕产妇保健、COVID-19和外科手术。nstagebinopt命令使用系统搜索过程,根据最优性标准找到一类有效的“可接受的”设计。nstagebin命令计算具有二进制结果的MAMS设计的分阶段样本量、试验时间表和总体操作特性。这两个命令都允许使用Dunnett校正来解释多次测试。我们还使用ROSSINI 2 MAMS设计,一项正在进行的MAMS手术伤口感染试验,来说明这两个命令的能力。新命令有助于设计具有二元结果的MAMS试验,其中多个研究问题可以在一个协议下解决。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Facilities for optimizing and designing multiarm multistage (MAMS) randomized controlled trials with binary outcomes
We introduce two commands, nstagebin and nstagebinopt, that can be used to facilitate the design of multiarm multistage (MAMS) trials with binary outcomes. MAMS designs are a class of efficient and adaptive randomized clinical trials that have successfully been used in many disease areas, including cancer, tuberculosis, maternal health, COVID-19, and surgery. The nstagebinopt command finds a class of efficient “admissible” designs based on an optimality criterion using a systematic search procedure. The nstagebin command calculates the stagewise sample sizes, trial timelines, and overall operating characteristics of MAMS designs with binary outcomes. Both commands allow the use of Dunnett’s correction to account for multiple testing. We also use the ROSSINI 2 MAMS design, an ongoing MAMS trial in surgical wound infection, to illustrate the capabilities of both commands. The new commands facilitate the design of MAMS trials with binary outcomes where more than one research question can be addressed under one protocol.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stata Journal
Stata Journal 数学-统计学与概率论
CiteScore
7.80
自引率
4.20%
发文量
44
审稿时长
>12 weeks
期刊介绍: The Stata Journal is a quarterly publication containing articles about statistics, data analysis, teaching methods, and effective use of Stata''s language. The Stata Journal publishes reviewed papers together with shorter notes and comments, regular columns, book reviews, and other material of interest to researchers applying statistics in a variety of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信