Babak Choodari-Oskooei, Daniel J. Bratton, Mahesh K. B. Parmar
{"title":"优化和设计具有二元结果的多臂多阶段随机对照试验的工具","authors":"Babak Choodari-Oskooei, Daniel J. Bratton, Mahesh K. B. Parmar","doi":"10.1177/1536867x231196295","DOIUrl":null,"url":null,"abstract":"We introduce two commands, nstagebin and nstagebinopt, that can be used to facilitate the design of multiarm multistage (MAMS) trials with binary outcomes. MAMS designs are a class of efficient and adaptive randomized clinical trials that have successfully been used in many disease areas, including cancer, tuberculosis, maternal health, COVID-19, and surgery. The nstagebinopt command finds a class of efficient “admissible” designs based on an optimality criterion using a systematic search procedure. The nstagebin command calculates the stagewise sample sizes, trial timelines, and overall operating characteristics of MAMS designs with binary outcomes. Both commands allow the use of Dunnett’s correction to account for multiple testing. We also use the ROSSINI 2 MAMS design, an ongoing MAMS trial in surgical wound infection, to illustrate the capabilities of both commands. The new commands facilitate the design of MAMS trials with binary outcomes where more than one research question can be addressed under one protocol.","PeriodicalId":51171,"journal":{"name":"Stata Journal","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Facilities for optimizing and designing multiarm multistage (MAMS) randomized controlled trials with binary outcomes\",\"authors\":\"Babak Choodari-Oskooei, Daniel J. Bratton, Mahesh K. B. Parmar\",\"doi\":\"10.1177/1536867x231196295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce two commands, nstagebin and nstagebinopt, that can be used to facilitate the design of multiarm multistage (MAMS) trials with binary outcomes. MAMS designs are a class of efficient and adaptive randomized clinical trials that have successfully been used in many disease areas, including cancer, tuberculosis, maternal health, COVID-19, and surgery. The nstagebinopt command finds a class of efficient “admissible” designs based on an optimality criterion using a systematic search procedure. The nstagebin command calculates the stagewise sample sizes, trial timelines, and overall operating characteristics of MAMS designs with binary outcomes. Both commands allow the use of Dunnett’s correction to account for multiple testing. We also use the ROSSINI 2 MAMS design, an ongoing MAMS trial in surgical wound infection, to illustrate the capabilities of both commands. The new commands facilitate the design of MAMS trials with binary outcomes where more than one research question can be addressed under one protocol.\",\"PeriodicalId\":51171,\"journal\":{\"name\":\"Stata Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stata Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/1536867x231196295\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOCIAL SCIENCES, MATHEMATICAL METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stata Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/1536867x231196295","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
Facilities for optimizing and designing multiarm multistage (MAMS) randomized controlled trials with binary outcomes
We introduce two commands, nstagebin and nstagebinopt, that can be used to facilitate the design of multiarm multistage (MAMS) trials with binary outcomes. MAMS designs are a class of efficient and adaptive randomized clinical trials that have successfully been used in many disease areas, including cancer, tuberculosis, maternal health, COVID-19, and surgery. The nstagebinopt command finds a class of efficient “admissible” designs based on an optimality criterion using a systematic search procedure. The nstagebin command calculates the stagewise sample sizes, trial timelines, and overall operating characteristics of MAMS designs with binary outcomes. Both commands allow the use of Dunnett’s correction to account for multiple testing. We also use the ROSSINI 2 MAMS design, an ongoing MAMS trial in surgical wound infection, to illustrate the capabilities of both commands. The new commands facilitate the design of MAMS trials with binary outcomes where more than one research question can be addressed under one protocol.
期刊介绍:
The Stata Journal is a quarterly publication containing articles about statistics, data analysis, teaching methods, and effective use of Stata''s language. The Stata Journal publishes reviewed papers together with shorter notes and comments, regular columns, book reviews, and other material of interest to researchers applying statistics in a variety of disciplines.