H_{1}^ 2(-r) \子集E_{1}^3$上曲线的全局视图

Buddhadev Pal, Santosh Kumar
{"title":"H_{1}^ 2(-r) \\子集E_{1}^3$上曲线的全局视图","authors":"Buddhadev Pal, Santosh Kumar","doi":"10.32513/asetmj/193220082324","DOIUrl":null,"url":null,"abstract":"In this paper, we study the geometry of the proper curve and proper helix of order 2 lying on the hyperbolic plane $H_{0}^2(-r)$, globally from Minkowski space $E_{1}^3$. We develop the Frenet frame (orthogonal frame) along the proper curve of order 2 using connection $\\tilde{\\nabla}$ on $E_ {1}^3$ and connection $\\nabla$ on $H_ {0} ^ 2(-r)$. The Frenet frame for the proper curve and proper helix of order 2 depends on the curvature of the proper curve and proper helix of order 2 in the hyperbolic plane $ H_ {0} ^ 2(-r)$. Finally, we find the condition for a proper curve of order 2 with non constant curvature to become a $V_{k} -$slant helix in $E_{1}^3$.","PeriodicalId":484498,"journal":{"name":"Advanced Studies Euro-Tbilisi Mathematical Journal","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global view of curves lying on $H_{0}^2(-r) \\\\subset E_{1}^3$\",\"authors\":\"Buddhadev Pal, Santosh Kumar\",\"doi\":\"10.32513/asetmj/193220082324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the geometry of the proper curve and proper helix of order 2 lying on the hyperbolic plane $H_{0}^2(-r)$, globally from Minkowski space $E_{1}^3$. We develop the Frenet frame (orthogonal frame) along the proper curve of order 2 using connection $\\\\tilde{\\\\nabla}$ on $E_ {1}^3$ and connection $\\\\nabla$ on $H_ {0} ^ 2(-r)$. The Frenet frame for the proper curve and proper helix of order 2 depends on the curvature of the proper curve and proper helix of order 2 in the hyperbolic plane $ H_ {0} ^ 2(-r)$. Finally, we find the condition for a proper curve of order 2 with non constant curvature to become a $V_{k} -$slant helix in $E_{1}^3$.\",\"PeriodicalId\":484498,\"journal\":{\"name\":\"Advanced Studies Euro-Tbilisi Mathematical Journal\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Studies Euro-Tbilisi Mathematical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32513/asetmj/193220082324\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Studies Euro-Tbilisi Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32513/asetmj/193220082324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文从Minkowski空间$E_{1}^3$全局地研究了双曲平面$H_{0}^2(-r)$上的2阶固有曲线和固有螺旋的几何性质。我们利用$E_ {1}^3$上的连接$\tilde{\nabla}$和$H_ {0} ^ 2(-r)$上的连接$\nabla$,沿适当的2阶曲线发展了Frenet框架(正交框架)。2阶固有曲线和固有螺旋的法内框架取决于双曲平面上固有曲线和固有螺旋的曲率$ H_ {0} ^ 2(-r)$。最后,我们找到了在$E_{1}^3$中具有非常曲率的2阶合适曲线成为$V_{k} -$斜螺旋的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global view of curves lying on $H_{0}^2(-r) \subset E_{1}^3$
In this paper, we study the geometry of the proper curve and proper helix of order 2 lying on the hyperbolic plane $H_{0}^2(-r)$, globally from Minkowski space $E_{1}^3$. We develop the Frenet frame (orthogonal frame) along the proper curve of order 2 using connection $\tilde{\nabla}$ on $E_ {1}^3$ and connection $\nabla$ on $H_ {0} ^ 2(-r)$. The Frenet frame for the proper curve and proper helix of order 2 depends on the curvature of the proper curve and proper helix of order 2 in the hyperbolic plane $ H_ {0} ^ 2(-r)$. Finally, we find the condition for a proper curve of order 2 with non constant curvature to become a $V_{k} -$slant helix in $E_{1}^3$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信