基于人工神经网络的深度标定:期权定价模型的性能比较

Young Shin Kim, Hyangju Kim, Jaehyung Choi
{"title":"基于人工神经网络的深度标定:期权定价模型的性能比较","authors":"Young Shin Kim, Hyangju Kim, Jaehyung Choi","doi":"10.3905/jfds.2023.1.140","DOIUrl":null,"url":null,"abstract":"This article explores artificial neural network (ANN) as a model-free solution for a calibration algorithm of option-pricing models. The authors construct ANNs to calibrate parameters for two well-known GARCH-type option-pricing models: Duan’s GARCH and the classical tempered stable GARCH models that significantly improve upon the limitation of the Black–Scholes model but have suffered from computation complexity. To mitigate this technical difficulty, the authors train ANNs with a dataset generated by the Monte Carlo simulation (MCS) method and apply them to calibrate optimal parameters. The performance results indicate that the ANN approach consistently outperforms MCS and takes advantage of faster computation times once trained. The Greeks of options are also discussed.","PeriodicalId":199045,"journal":{"name":"The Journal of Financial Data Science","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Calibration with Artificial Neural Network: A Performance Comparison on Option-Pricing Models\",\"authors\":\"Young Shin Kim, Hyangju Kim, Jaehyung Choi\",\"doi\":\"10.3905/jfds.2023.1.140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article explores artificial neural network (ANN) as a model-free solution for a calibration algorithm of option-pricing models. The authors construct ANNs to calibrate parameters for two well-known GARCH-type option-pricing models: Duan’s GARCH and the classical tempered stable GARCH models that significantly improve upon the limitation of the Black–Scholes model but have suffered from computation complexity. To mitigate this technical difficulty, the authors train ANNs with a dataset generated by the Monte Carlo simulation (MCS) method and apply them to calibrate optimal parameters. The performance results indicate that the ANN approach consistently outperforms MCS and takes advantage of faster computation times once trained. The Greeks of options are also discussed.\",\"PeriodicalId\":199045,\"journal\":{\"name\":\"The Journal of Financial Data Science\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Financial Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3905/jfds.2023.1.140\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Financial Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3905/jfds.2023.1.140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了人工神经网络(ANN)作为期权定价模型标定算法的无模型解决方案。作者构建了人工神经网络来校准两种著名的GARCH型期权定价模型的参数:Duan的GARCH和经典的调和稳定GARCH模型,它们显著改善了Black-Scholes模型的局限性,但存在计算复杂性的问题。为了减轻这一技术困难,作者使用蒙特卡罗模拟(MCS)方法生成的数据集训练人工神经网络,并将其应用于校准最优参数。性能结果表明,人工神经网络方法始终优于MCS,并且在训练后具有更快的计算时间。还讨论了希腊人的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Calibration with Artificial Neural Network: A Performance Comparison on Option-Pricing Models
This article explores artificial neural network (ANN) as a model-free solution for a calibration algorithm of option-pricing models. The authors construct ANNs to calibrate parameters for two well-known GARCH-type option-pricing models: Duan’s GARCH and the classical tempered stable GARCH models that significantly improve upon the limitation of the Black–Scholes model but have suffered from computation complexity. To mitigate this technical difficulty, the authors train ANNs with a dataset generated by the Monte Carlo simulation (MCS) method and apply them to calibrate optimal parameters. The performance results indicate that the ANN approach consistently outperforms MCS and takes advantage of faster computation times once trained. The Greeks of options are also discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信