{"title":"面向深度强化学习网络控制器的未来解释","authors":"Sagar Patel, Sangeetha Abdu Jyothi, Nina Narodytska","doi":"10.1145/3626570.3626607","DOIUrl":null,"url":null,"abstract":"Lack of explainability is hindering the practical adoption of high-performance Deep Reinforcement Learning (DRL) controllers. Prior work focused on explaining the controller by identifying salient features of the controller's input. However, these feature-based methods focus solely on inputs and do not fully explain the controller's policy. In this paper, we put forward future-based explainers as an essential tool for providing insights into the controller's decision-making process and, thereby, facilitating the practical deployment of DRL controllers. We highlight two applications of futurebased explainers in the networking domain: online safety assurance and guided controller design. Finally, we provide a roadmap for the practical development and deployment of future-based explainers for DRL network controllers.","PeriodicalId":35745,"journal":{"name":"Performance Evaluation Review","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards Future-Based Explanations for Deep RL Network Controllers\",\"authors\":\"Sagar Patel, Sangeetha Abdu Jyothi, Nina Narodytska\",\"doi\":\"10.1145/3626570.3626607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lack of explainability is hindering the practical adoption of high-performance Deep Reinforcement Learning (DRL) controllers. Prior work focused on explaining the controller by identifying salient features of the controller's input. However, these feature-based methods focus solely on inputs and do not fully explain the controller's policy. In this paper, we put forward future-based explainers as an essential tool for providing insights into the controller's decision-making process and, thereby, facilitating the practical deployment of DRL controllers. We highlight two applications of futurebased explainers in the networking domain: online safety assurance and guided controller design. Finally, we provide a roadmap for the practical development and deployment of future-based explainers for DRL network controllers.\",\"PeriodicalId\":35745,\"journal\":{\"name\":\"Performance Evaluation Review\",\"volume\":\"98 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Performance Evaluation Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3626570.3626607\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Performance Evaluation Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3626570.3626607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
Towards Future-Based Explanations for Deep RL Network Controllers
Lack of explainability is hindering the practical adoption of high-performance Deep Reinforcement Learning (DRL) controllers. Prior work focused on explaining the controller by identifying salient features of the controller's input. However, these feature-based methods focus solely on inputs and do not fully explain the controller's policy. In this paper, we put forward future-based explainers as an essential tool for providing insights into the controller's decision-making process and, thereby, facilitating the practical deployment of DRL controllers. We highlight two applications of futurebased explainers in the networking domain: online safety assurance and guided controller design. Finally, we provide a roadmap for the practical development and deployment of future-based explainers for DRL network controllers.