时间平均MDP中的最优策略是什么?

Q4 Computer Science
Nicolas Gast, Bruno Gaujal, Kimang Khun
{"title":"时间平均MDP中的最优策略是什么?","authors":"Nicolas Gast, Bruno Gaujal, Kimang Khun","doi":"10.1145/3626570.3626582","DOIUrl":null,"url":null,"abstract":"This paper discusses the notion of optimality for time-average MDPs. We argue that while most authors claim to use the \"average reward\" criteria, the notion that is implicitly used is in fact the notion of what we call Bellman optimality. We show that it does not coincide with other existing notions of optimality, like gain-optimality and bias-optimality but has strong connection with canonical-policies (policies that are optimal for any finite horizons) as well as value iteration and policy iterations algorithms.","PeriodicalId":35745,"journal":{"name":"Performance Evaluation Review","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"What is an Optimal Policy in Time-Average MDP?\",\"authors\":\"Nicolas Gast, Bruno Gaujal, Kimang Khun\",\"doi\":\"10.1145/3626570.3626582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses the notion of optimality for time-average MDPs. We argue that while most authors claim to use the \\\"average reward\\\" criteria, the notion that is implicitly used is in fact the notion of what we call Bellman optimality. We show that it does not coincide with other existing notions of optimality, like gain-optimality and bias-optimality but has strong connection with canonical-policies (policies that are optimal for any finite horizons) as well as value iteration and policy iterations algorithms.\",\"PeriodicalId\":35745,\"journal\":{\"name\":\"Performance Evaluation Review\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Performance Evaluation Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3626570.3626582\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Performance Evaluation Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3626570.3626582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了时间平均mdp的最优性概念。我们认为,虽然大多数作者声称使用“平均奖励”标准,但隐含使用的概念实际上是我们称之为Bellman最优性的概念。我们表明,它与其他现有的最优性概念不一致,如增益最优性和偏差最优性,但与经典策略(对任何有限视界最优的策略)以及值迭代和策略迭代算法有很强的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
What is an Optimal Policy in Time-Average MDP?
This paper discusses the notion of optimality for time-average MDPs. We argue that while most authors claim to use the "average reward" criteria, the notion that is implicitly used is in fact the notion of what we call Bellman optimality. We show that it does not coincide with other existing notions of optimality, like gain-optimality and bias-optimality but has strong connection with canonical-policies (policies that are optimal for any finite horizons) as well as value iteration and policy iterations algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Performance Evaluation Review
Performance Evaluation Review Computer Science-Computer Networks and Communications
CiteScore
1.00
自引率
0.00%
发文量
193
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信