基于控制的强化学习马尔可夫决策过程框架

Q4 Computer Science
Yingdong Lu, Mark S. Squillante, Chai Wah Wu
{"title":"基于控制的强化学习马尔可夫决策过程框架","authors":"Yingdong Lu, Mark S. Squillante, Chai Wah Wu","doi":"10.1145/3626570.3626585","DOIUrl":null,"url":null,"abstract":"For many years, reinforcement learning (RL) has proven to be very successful in solving a wide variety of learning and decision making under uncertainty (DMuU) problems, including those related to game playing and robotic control. Many different RL approaches, with varying levels of success, have been developed to address these problems.","PeriodicalId":35745,"journal":{"name":"Performance Evaluation Review","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Markov Decision Process Framework for Control-Based Reinforcement Learning\",\"authors\":\"Yingdong Lu, Mark S. Squillante, Chai Wah Wu\",\"doi\":\"10.1145/3626570.3626585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For many years, reinforcement learning (RL) has proven to be very successful in solving a wide variety of learning and decision making under uncertainty (DMuU) problems, including those related to game playing and robotic control. Many different RL approaches, with varying levels of success, have been developed to address these problems.\",\"PeriodicalId\":35745,\"journal\":{\"name\":\"Performance Evaluation Review\",\"volume\":\"101 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Performance Evaluation Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3626570.3626585\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Performance Evaluation Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3626570.3626585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

多年来,强化学习(RL)已被证明在解决各种不确定性(DMuU)问题(包括与游戏和机器人控制相关的问题)下的学习和决策制定方面非常成功。为了解决这些问题,已经开发了许多不同的强化学习方法,取得了不同程度的成功。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Markov Decision Process Framework for Control-Based Reinforcement Learning
For many years, reinforcement learning (RL) has proven to be very successful in solving a wide variety of learning and decision making under uncertainty (DMuU) problems, including those related to game playing and robotic control. Many different RL approaches, with varying levels of success, have been developed to address these problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Performance Evaluation Review
Performance Evaluation Review Computer Science-Computer Networks and Communications
CiteScore
1.00
自引率
0.00%
发文量
193
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信