{"title":"退相干存在下的GHZ蒸馏协议","authors":"S´ebastian de Bone, David Elkouss","doi":"10.1145/3626570.3626599","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a novel heuristic approach designed to optimize the performance of Greenberger-Horne- Zeilinger (GHZ) creation and distillation protocols under decoherence. Our methodology converts these protocols into a practical set of instructions, demonstrating, through simulations, the production of higher-quality GHZ states than previously known protocols. This advancement contributes to the field of distributed quantum computing by addressing the need for high-quality entanglement required for operations between different quantum computers.","PeriodicalId":35745,"journal":{"name":"Performance Evaluation Review","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GHZ distillation protocols in the presence of decoherence\",\"authors\":\"S´ebastian de Bone, David Elkouss\",\"doi\":\"10.1145/3626570.3626599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce a novel heuristic approach designed to optimize the performance of Greenberger-Horne- Zeilinger (GHZ) creation and distillation protocols under decoherence. Our methodology converts these protocols into a practical set of instructions, demonstrating, through simulations, the production of higher-quality GHZ states than previously known protocols. This advancement contributes to the field of distributed quantum computing by addressing the need for high-quality entanglement required for operations between different quantum computers.\",\"PeriodicalId\":35745,\"journal\":{\"name\":\"Performance Evaluation Review\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Performance Evaluation Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3626570.3626599\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Performance Evaluation Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3626570.3626599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
GHZ distillation protocols in the presence of decoherence
In this paper, we introduce a novel heuristic approach designed to optimize the performance of Greenberger-Horne- Zeilinger (GHZ) creation and distillation protocols under decoherence. Our methodology converts these protocols into a practical set of instructions, demonstrating, through simulations, the production of higher-quality GHZ states than previously known protocols. This advancement contributes to the field of distributed quantum computing by addressing the need for high-quality entanglement required for operations between different quantum computers.