Tatiana A. Belevich, Irina A. Milyutina, Aleksey V. Troitsky
{"title":"西伯利亚三河河口和俄罗斯北极海相邻陆架的Picocyanobacteria:遗传多样性和分布","authors":"Tatiana A. Belevich, Irina A. Milyutina, Aleksey V. Troitsky","doi":"10.3390/d15101049","DOIUrl":null,"url":null,"abstract":"Single-cell cyanobacteria, being an integral part of picoplankton in marine ecosystems, have been suggested to be important contributors to primary production and carbon cycles in the global ocean. The spatial distribution, abundance and diversity of natural communities of picocyanobacteria (PC) in estuaries of Khatanga, Indigirka and Kolyma rivers and adjacent shelves of the Laptev and East Siberian seas were studied in September 2017. The PC concentrations were higher in the estuaries than in the shelf stations of the seas. The abundance of PC was 1.25 × 106 cells/L, 0.42 × 106 cells/L and 1.58 × 106 cells/L in the surface layer of Khatanga, Indigirka and Kolyma estuaries, respectively. The contribution of PC to total autumn picophytoplankton abundance averaged 6% and 3% in the Khatanga and Indigirka estuaries and reached 5% in the Kolyma estuary. Phylogenetic analysis of the 16S rRNA gene and ITS region clone libraries revealed picocyanobacterial sequences related to marine Synechococcus subclusters 5.1-I, 5.2 and 5.3. Of the phylotypes from Synechococcus S5.1-I and S5.2 that were found, only several were discovered earlier, while the remaining clones were unique. Two groups of phylotypes (clades A and E) were found that were not closely similar to those previously described in both marine and freshwater habitats. It can be expected that a more detailed study of the phytoplankton of the Arctic seas will further expand our understanding of the diversity of these key components of the food chains of oceanic biocenoses.","PeriodicalId":56006,"journal":{"name":"Diversity-Basel","volume":"134 1","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Picocyanobacteria in Estuaries of Three Siberian Rivers and Adjacent Shelves of Russian Arctic Seas: Genetic Diversity and Distribution\",\"authors\":\"Tatiana A. Belevich, Irina A. Milyutina, Aleksey V. Troitsky\",\"doi\":\"10.3390/d15101049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Single-cell cyanobacteria, being an integral part of picoplankton in marine ecosystems, have been suggested to be important contributors to primary production and carbon cycles in the global ocean. The spatial distribution, abundance and diversity of natural communities of picocyanobacteria (PC) in estuaries of Khatanga, Indigirka and Kolyma rivers and adjacent shelves of the Laptev and East Siberian seas were studied in September 2017. The PC concentrations were higher in the estuaries than in the shelf stations of the seas. The abundance of PC was 1.25 × 106 cells/L, 0.42 × 106 cells/L and 1.58 × 106 cells/L in the surface layer of Khatanga, Indigirka and Kolyma estuaries, respectively. The contribution of PC to total autumn picophytoplankton abundance averaged 6% and 3% in the Khatanga and Indigirka estuaries and reached 5% in the Kolyma estuary. Phylogenetic analysis of the 16S rRNA gene and ITS region clone libraries revealed picocyanobacterial sequences related to marine Synechococcus subclusters 5.1-I, 5.2 and 5.3. Of the phylotypes from Synechococcus S5.1-I and S5.2 that were found, only several were discovered earlier, while the remaining clones were unique. Two groups of phylotypes (clades A and E) were found that were not closely similar to those previously described in both marine and freshwater habitats. It can be expected that a more detailed study of the phytoplankton of the Arctic seas will further expand our understanding of the diversity of these key components of the food chains of oceanic biocenoses.\",\"PeriodicalId\":56006,\"journal\":{\"name\":\"Diversity-Basel\",\"volume\":\"134 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diversity-Basel\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/d15101049\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIODIVERSITY CONSERVATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diversity-Basel","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/d15101049","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
Picocyanobacteria in Estuaries of Three Siberian Rivers and Adjacent Shelves of Russian Arctic Seas: Genetic Diversity and Distribution
Single-cell cyanobacteria, being an integral part of picoplankton in marine ecosystems, have been suggested to be important contributors to primary production and carbon cycles in the global ocean. The spatial distribution, abundance and diversity of natural communities of picocyanobacteria (PC) in estuaries of Khatanga, Indigirka and Kolyma rivers and adjacent shelves of the Laptev and East Siberian seas were studied in September 2017. The PC concentrations were higher in the estuaries than in the shelf stations of the seas. The abundance of PC was 1.25 × 106 cells/L, 0.42 × 106 cells/L and 1.58 × 106 cells/L in the surface layer of Khatanga, Indigirka and Kolyma estuaries, respectively. The contribution of PC to total autumn picophytoplankton abundance averaged 6% and 3% in the Khatanga and Indigirka estuaries and reached 5% in the Kolyma estuary. Phylogenetic analysis of the 16S rRNA gene and ITS region clone libraries revealed picocyanobacterial sequences related to marine Synechococcus subclusters 5.1-I, 5.2 and 5.3. Of the phylotypes from Synechococcus S5.1-I and S5.2 that were found, only several were discovered earlier, while the remaining clones were unique. Two groups of phylotypes (clades A and E) were found that were not closely similar to those previously described in both marine and freshwater habitats. It can be expected that a more detailed study of the phytoplankton of the Arctic seas will further expand our understanding of the diversity of these key components of the food chains of oceanic biocenoses.
期刊介绍:
Diversity (ISSN 1424-2818) is an international and interdisciplinary journal of science concerning diversity concept and application, diversity assessment and diversity preservation. It is focused on organismic and molecular diversity. It publishes reviews, regular research papers and short notes in the regular issues. Related news and announcements are also published. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. Full experimental details must be provided so that the results can be reproduced.