用有偏差的技术变革识别替代弹性——一个结构面板GMM估计器

IF 2.9 4区 经济学 Q1 ECONOMICS
Thomas von Brasch, Arvid Raknerud, Trond C Vigtel
{"title":"用有偏差的技术变革识别替代弹性——一个结构面板GMM估计器","authors":"Thomas von Brasch, Arvid Raknerud, Trond C Vigtel","doi":"10.1093/ectj/utad020","DOIUrl":null,"url":null,"abstract":"Abstract This paper provides a structural panel GMM (P-GMM) estimator of the elasticity of substitution between capital and labour that does not depend on external instruments, and which can be applied in the presence of biased technical change. We identify the conditions under which P-GMM is a consistent estimator and compare it to a fixed effects estimator. Using a Monte Carlo study, we find that the P-GMM estimator is nearly unbiased provided the number of time periods (T) is not too small. We show analytically how the small-T bias is related to metrics of weak identification. In an application on manufacturing firms in Norway, we estimate the elasticity of substitution to be 1.9 using the P-GMM and 1.0 using the fixed effects estimator. Neglecting simultaneity may thus lead to the conclusion that capital and labour are complements or can be described by Cobb-Douglas technology, when, in fact, they are substitutes.","PeriodicalId":50555,"journal":{"name":"Econometrics Journal","volume":"12 1","pages":"0"},"PeriodicalIF":2.9000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identifying the elasticity of substitution with biased technical change - a structural panel GMM estimator\",\"authors\":\"Thomas von Brasch, Arvid Raknerud, Trond C Vigtel\",\"doi\":\"10.1093/ectj/utad020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper provides a structural panel GMM (P-GMM) estimator of the elasticity of substitution between capital and labour that does not depend on external instruments, and which can be applied in the presence of biased technical change. We identify the conditions under which P-GMM is a consistent estimator and compare it to a fixed effects estimator. Using a Monte Carlo study, we find that the P-GMM estimator is nearly unbiased provided the number of time periods (T) is not too small. We show analytically how the small-T bias is related to metrics of weak identification. In an application on manufacturing firms in Norway, we estimate the elasticity of substitution to be 1.9 using the P-GMM and 1.0 using the fixed effects estimator. Neglecting simultaneity may thus lead to the conclusion that capital and labour are complements or can be described by Cobb-Douglas technology, when, in fact, they are substitutes.\",\"PeriodicalId\":50555,\"journal\":{\"name\":\"Econometrics Journal\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometrics Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/ectj/utad020\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ectj/utad020","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文提供了一个不依赖于外部工具的资本和劳动力之间替代弹性的结构面板GMM (P-GMM)估计器,它可以应用于存在偏见的技术变革。我们确定了P-GMM是一致估计量的条件,并将其与固定效应估计量进行了比较。通过蒙特卡罗研究,我们发现,只要时间周期(T)的数量不太小,P-GMM估计量几乎是无偏的。我们分析地展示了小t偏差是如何与弱识别指标相关的。在对挪威制造企业的应用中,我们使用P-GMM估计替代弹性为1.9,使用固定效应估计器估计替代弹性为1.0。因此,忽视同时性可能会导致这样的结论:资本和劳动力是互补的,或者可以用科布-道格拉斯技术来描述,而实际上,它们是替代品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identifying the elasticity of substitution with biased technical change - a structural panel GMM estimator
Abstract This paper provides a structural panel GMM (P-GMM) estimator of the elasticity of substitution between capital and labour that does not depend on external instruments, and which can be applied in the presence of biased technical change. We identify the conditions under which P-GMM is a consistent estimator and compare it to a fixed effects estimator. Using a Monte Carlo study, we find that the P-GMM estimator is nearly unbiased provided the number of time periods (T) is not too small. We show analytically how the small-T bias is related to metrics of weak identification. In an application on manufacturing firms in Norway, we estimate the elasticity of substitution to be 1.9 using the P-GMM and 1.0 using the fixed effects estimator. Neglecting simultaneity may thus lead to the conclusion that capital and labour are complements or can be described by Cobb-Douglas technology, when, in fact, they are substitutes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Econometrics Journal
Econometrics Journal 管理科学-数学跨学科应用
CiteScore
4.20
自引率
5.30%
发文量
25
审稿时长
>12 weeks
期刊介绍: The Econometrics Journal was established in 1998 by the Royal Economic Society with the aim of creating a top international field journal for the publication of econometric research with a standard of intellectual rigour and academic standing similar to those of the pre-existing top field journals in econometrics. The Econometrics Journal is committed to publishing first-class papers in macro-, micro- and financial econometrics. It is a general journal for econometric research open to all areas of econometrics, whether applied, computational, methodological or theoretical contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信