对具有任意轴向的超椭球类的大型数据集进行模糊可靠聚类

А. Ю. Шафроненко, Є. В. Бодянський
{"title":"对具有任意轴向的超椭球类的大型数据集进行模糊可靠聚类","authors":"А. Ю. Шафроненко, Є. В. Бодянський","doi":"10.30748/nitps.2023.50.11","DOIUrl":null,"url":null,"abstract":"Проблема нечіткої кластеризації даних є важливою проблемою, яка часто зустрічається в різноманітних задачах інтелектуального аналізу даних. Для вирішення цих задач відомі методи потребують, щоб вектори-спостереження надходили з тих даних, які належать лише одному кластеру, але природніша та ситуація, коли вектор-спостереження може належати більше ніж одному кластеру або класу. Із таким родом проблем найкраще справляються нечіткі методи кластеризації, які синтезовані з урахуванням взаємного перетинання класів, які формуються в процесі аналізу даних. Найбільш поширені алгоритми нечіткої кластеризації – імовірнісні методи нечіткої кластеризації. В той же час, цей підхід має суттєві недоліки, пов'язані зі строгими “імовірнісними” обмеженнями щодо рівня належності та підвищеною чутливістю до аномальних спостережень, які часто присутні у вихідних наборах даних. В якості альтернативи імовірнісним методам нечіткої кластеризації було запропоновано метод достовірної нечіткої кластеризації з рекурентною модифікацією, який базується на підході правдоподібності та алгоритмі Густафсона-Кесселя для нечіткої кластеризації.","PeriodicalId":52997,"journal":{"name":"Nauka i tekhnika Povitrianikh Sil Zbroinikh Sil Ukrayini","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Нечітка достовірна кластеризація великих масивів даних з гіпереліпсоїдальними класами з довільною орієнтацією осей\",\"authors\":\"А. Ю. Шафроненко, Є. В. Бодянський\",\"doi\":\"10.30748/nitps.2023.50.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Проблема нечіткої кластеризації даних є важливою проблемою, яка часто зустрічається в різноманітних задачах інтелектуального аналізу даних. Для вирішення цих задач відомі методи потребують, щоб вектори-спостереження надходили з тих даних, які належать лише одному кластеру, але природніша та ситуація, коли вектор-спостереження може належати більше ніж одному кластеру або класу. Із таким родом проблем найкраще справляються нечіткі методи кластеризації, які синтезовані з урахуванням взаємного перетинання класів, які формуються в процесі аналізу даних. Найбільш поширені алгоритми нечіткої кластеризації – імовірнісні методи нечіткої кластеризації. В той же час, цей підхід має суттєві недоліки, пов'язані зі строгими “імовірнісними” обмеженнями щодо рівня належності та підвищеною чутливістю до аномальних спостережень, які часто присутні у вихідних наборах даних. В якості альтернативи імовірнісним методам нечіткої кластеризації було запропоновано метод достовірної нечіткої кластеризації з рекурентною модифікацією, який базується на підході правдоподібності та алгоритмі Густафсона-Кесселя для нечіткої кластеризації.\",\"PeriodicalId\":52997,\"journal\":{\"name\":\"Nauka i tekhnika Povitrianikh Sil Zbroinikh Sil Ukrayini\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nauka i tekhnika Povitrianikh Sil Zbroinikh Sil Ukrayini\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30748/nitps.2023.50.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nauka i tekhnika Povitrianikh Sil Zbroinikh Sil Ukrayini","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30748/nitps.2023.50.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

模糊数据聚类问题是各种数据挖掘任务中经常出现的一个重要问题。要解决这些问题,众所周知的方法要求观测向量来自只属于一个聚类的数据,但更自然的情况是,一个观测向量可能属于多个聚类或类别。这种问题最好用模糊聚类方法来处理,这种方法是利用数据分析过程中形成的类的相互重叠来合成的。最常见的模糊聚类算法是概率模糊聚类方法。与此同时,这种方法也有很大的缺点,那就是对成员级别有严格的 "概率 "限制,而且对原始数据集中经常出现的异常观测结果更加敏感。作为概率模糊聚类方法的替代方法,作者提出了一种可靠的循环修改模糊聚类方法,该方法基于似然法和 Gustafson-Kessel 算法进行模糊聚类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Нечітка достовірна кластеризація великих масивів даних з гіпереліпсоїдальними класами з довільною орієнтацією осей
Проблема нечіткої кластеризації даних є важливою проблемою, яка часто зустрічається в різноманітних задачах інтелектуального аналізу даних. Для вирішення цих задач відомі методи потребують, щоб вектори-спостереження надходили з тих даних, які належать лише одному кластеру, але природніша та ситуація, коли вектор-спостереження може належати більше ніж одному кластеру або класу. Із таким родом проблем найкраще справляються нечіткі методи кластеризації, які синтезовані з урахуванням взаємного перетинання класів, які формуються в процесі аналізу даних. Найбільш поширені алгоритми нечіткої кластеризації – імовірнісні методи нечіткої кластеризації. В той же час, цей підхід має суттєві недоліки, пов'язані зі строгими “імовірнісними” обмеженнями щодо рівня належності та підвищеною чутливістю до аномальних спостережень, які часто присутні у вихідних наборах даних. В якості альтернативи імовірнісним методам нечіткої кластеризації було запропоновано метод достовірної нечіткої кластеризації з рекурентною модифікацією, який базується на підході правдоподібності та алгоритмі Густафсона-Кесселя для нечіткої кластеризації.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
14
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信