S. Ganeshkumar, Bipin Kumar Singh, R. Suresh Kumar, Anandakumar Haldorai
{"title":"铝5052加工中车床刀具状态监测的数字孪生框架","authors":"S. Ganeshkumar, Bipin Kumar Singh, R. Suresh Kumar, Anandakumar Haldorai","doi":"10.14429/dsj.73.18650","DOIUrl":null,"url":null,"abstract":"
 
 
 Digital Twin (DT) is a virtual representation of a product system that exhibits the properties and analyzes the system’s functions. The significant impact of DT extends to several fields, which increases productivity and reduces wastage. This article focuses on developing a Digital twin model of a Lathe machine for Tool Condition Monitoring (TCM). DT implementation in industries is challenging due to simulating online cutting forces and wear. Even though several pieces of research have been carried out in the prediction of tool conditions using machine learning, Artificial Neural network models, only a few pieces of research have been made in digital twins for TCM. This article provides the technique for implementing the DT model of a lathe tool. The feasibility of the DT Model framework is verified by a case study of the turning process with a CNC Lathe machine while machining of Aluminium 5052 workpiece using Titanium Nitride coated tool inserts. The sensor’s data are acquired and fed to the microcontroller for real-time data acquisition. The real-time dataset is processed in the DT model for monitoring and predicting the tool conditions. The tool wear classification using the DT model is achieved. Developing the Digital Twin model in machining increases productivity and assists in predictive maintenance.
 
 
","PeriodicalId":11043,"journal":{"name":"Defence Science Journal","volume":"1 1","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Digital Twin Framework for Lathe Tool Condition Monitoring in Machining of Aluminium 5052\",\"authors\":\"S. Ganeshkumar, Bipin Kumar Singh, R. Suresh Kumar, Anandakumar Haldorai\",\"doi\":\"10.14429/dsj.73.18650\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"
 
 
 Digital Twin (DT) is a virtual representation of a product system that exhibits the properties and analyzes the system’s functions. The significant impact of DT extends to several fields, which increases productivity and reduces wastage. This article focuses on developing a Digital twin model of a Lathe machine for Tool Condition Monitoring (TCM). DT implementation in industries is challenging due to simulating online cutting forces and wear. Even though several pieces of research have been carried out in the prediction of tool conditions using machine learning, Artificial Neural network models, only a few pieces of research have been made in digital twins for TCM. This article provides the technique for implementing the DT model of a lathe tool. The feasibility of the DT Model framework is verified by a case study of the turning process with a CNC Lathe machine while machining of Aluminium 5052 workpiece using Titanium Nitride coated tool inserts. The sensor’s data are acquired and fed to the microcontroller for real-time data acquisition. The real-time dataset is processed in the DT model for monitoring and predicting the tool conditions. The tool wear classification using the DT model is achieved. Developing the Digital Twin model in machining increases productivity and assists in predictive maintenance.
 
 
\",\"PeriodicalId\":11043,\"journal\":{\"name\":\"Defence Science Journal\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Defence Science Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14429/dsj.73.18650\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Defence Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14429/dsj.73.18650","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Digital Twin Framework for Lathe Tool Condition Monitoring in Machining of Aluminium 5052
Digital Twin (DT) is a virtual representation of a product system that exhibits the properties and analyzes the system’s functions. The significant impact of DT extends to several fields, which increases productivity and reduces wastage. This article focuses on developing a Digital twin model of a Lathe machine for Tool Condition Monitoring (TCM). DT implementation in industries is challenging due to simulating online cutting forces and wear. Even though several pieces of research have been carried out in the prediction of tool conditions using machine learning, Artificial Neural network models, only a few pieces of research have been made in digital twins for TCM. This article provides the technique for implementing the DT model of a lathe tool. The feasibility of the DT Model framework is verified by a case study of the turning process with a CNC Lathe machine while machining of Aluminium 5052 workpiece using Titanium Nitride coated tool inserts. The sensor’s data are acquired and fed to the microcontroller for real-time data acquisition. The real-time dataset is processed in the DT model for monitoring and predicting the tool conditions. The tool wear classification using the DT model is achieved. Developing the Digital Twin model in machining increases productivity and assists in predictive maintenance.
期刊介绍:
Defence Science Journal is a peer-reviewed, multidisciplinary research journal in the area of defence science and technology. Journal feature recent progresses made in the field of defence/military support system and new findings/breakthroughs, etc. Major subject fields covered include: aeronautics, armaments, combat vehicles and engineering, biomedical sciences, computer sciences, electronics, material sciences, missiles, naval systems, etc.