利用遥控飞机系统和机器学习识别巴西亚热带森林中的入侵树木

IF 1.4 4区 地球科学 Q4 ENVIRONMENTAL SCIENCES
Sally Deborah Pereira da Silva, Fernando Coelho Eugenio, Roberta Aparecida Fantinel, Lucio de Paula Amaral, Caroline Lorenci Mallmann, Fernanda Dias dos Santos, Alexandre Rosa dos Santos, Rudiney Soares Pereira
{"title":"利用遥控飞机系统和机器学习识别巴西亚热带森林中的入侵树木","authors":"Sally Deborah Pereira da Silva, Fernando Coelho Eugenio, Roberta Aparecida Fantinel, Lucio de Paula Amaral, Caroline Lorenci Mallmann, Fernanda Dias dos Santos, Alexandre Rosa dos Santos, Rudiney Soares Pereira","doi":"10.1117/1.jrs.17.034514","DOIUrl":null,"url":null,"abstract":"We aimed to combine the use of images obtained from remotely piloted aircraft systems (RPAS) and machine learning (ML) to identify the invasive alien species Psidium guajava in a protected area in southern Brazil. Field data were obtained in a sampling area, where the species’ geographic coordinates were collected with a global positioning system device. Remote data were collected with the Parrot Sequoia® multispectral camera onboard the Phantom 4® Pro platform. Image processing was used to generate reflectance maps and vegetation indices, after which four classes of interest were defined for model training. The supervised classification involved two approaches (pixel-based—BP and object-based image analysis—OBIA) and two ML algorithms compared (random forest—RF and support vector machine—SVM). For performance analysis, confusion matrices with user and producer accuracies, Kappa values and overall accuracy (OA) were calculated. The results demonstrate that the multispectral composition was excellent in identifying the invasive P. guajava, in an OBIA approach with the RF algorithm (0.90 Kappa and 93% OA). Thus, considering the priority of biodiversity conservation and the importance of the Brazilian Atlantic Forest for the maintenance of endemic and endangered species, we present a robust methodology to identify the invasive species P. guajava in subtropical forest, which can be applied in management strategies for the species control and eradication.","PeriodicalId":54879,"journal":{"name":"Journal of Applied Remote Sensing","volume":"26 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of invasive trees in a Brazilian subtropical forest using remotely piloted aircraft systems and machine learning\",\"authors\":\"Sally Deborah Pereira da Silva, Fernando Coelho Eugenio, Roberta Aparecida Fantinel, Lucio de Paula Amaral, Caroline Lorenci Mallmann, Fernanda Dias dos Santos, Alexandre Rosa dos Santos, Rudiney Soares Pereira\",\"doi\":\"10.1117/1.jrs.17.034514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We aimed to combine the use of images obtained from remotely piloted aircraft systems (RPAS) and machine learning (ML) to identify the invasive alien species Psidium guajava in a protected area in southern Brazil. Field data were obtained in a sampling area, where the species’ geographic coordinates were collected with a global positioning system device. Remote data were collected with the Parrot Sequoia® multispectral camera onboard the Phantom 4® Pro platform. Image processing was used to generate reflectance maps and vegetation indices, after which four classes of interest were defined for model training. The supervised classification involved two approaches (pixel-based—BP and object-based image analysis—OBIA) and two ML algorithms compared (random forest—RF and support vector machine—SVM). For performance analysis, confusion matrices with user and producer accuracies, Kappa values and overall accuracy (OA) were calculated. The results demonstrate that the multispectral composition was excellent in identifying the invasive P. guajava, in an OBIA approach with the RF algorithm (0.90 Kappa and 93% OA). Thus, considering the priority of biodiversity conservation and the importance of the Brazilian Atlantic Forest for the maintenance of endemic and endangered species, we present a robust methodology to identify the invasive species P. guajava in subtropical forest, which can be applied in management strategies for the species control and eradication.\",\"PeriodicalId\":54879,\"journal\":{\"name\":\"Journal of Applied Remote Sensing\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Remote Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/1.jrs.17.034514\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/1.jrs.17.034514","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

我们的目标是结合使用远程驾驶飞机系统(RPAS)和机器学习(ML)获得的图像来识别巴西南部一个保护区的入侵外来物种瓜爪哇Psidium guajava。野外数据是在一个采样区获得的,在那里用全球定位系统设备收集了物种的地理坐标。远程数据由Phantom 4®Pro平台上的Parrot Sequoia®多光谱相机收集。通过图像处理生成反射率图和植被指数,然后定义四类兴趣点用于模型训练。监督分类涉及两种方法(基于像素的bp和基于对象的图像分析- obia),并比较了两种机器学习算法(随机森林- rf和支持向量机- svm)。为了进行性能分析,计算了包含用户和生产者精度、Kappa值和总体精度(OA)的混淆矩阵。结果表明,采用射频算法(0.90 Kappa和93% OA)的OBIA方法,多光谱组成对入侵番石榴具有良好的识别效果。因此,考虑到生物多样性保护的优先性和巴西大西洋森林对特有和濒危物种维持的重要性,我们提出了一种强大的方法来识别亚热带森林中入侵物种瓜爪哇,可以应用于物种控制和根除的管理策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of invasive trees in a Brazilian subtropical forest using remotely piloted aircraft systems and machine learning
We aimed to combine the use of images obtained from remotely piloted aircraft systems (RPAS) and machine learning (ML) to identify the invasive alien species Psidium guajava in a protected area in southern Brazil. Field data were obtained in a sampling area, where the species’ geographic coordinates were collected with a global positioning system device. Remote data were collected with the Parrot Sequoia® multispectral camera onboard the Phantom 4® Pro platform. Image processing was used to generate reflectance maps and vegetation indices, after which four classes of interest were defined for model training. The supervised classification involved two approaches (pixel-based—BP and object-based image analysis—OBIA) and two ML algorithms compared (random forest—RF and support vector machine—SVM). For performance analysis, confusion matrices with user and producer accuracies, Kappa values and overall accuracy (OA) were calculated. The results demonstrate that the multispectral composition was excellent in identifying the invasive P. guajava, in an OBIA approach with the RF algorithm (0.90 Kappa and 93% OA). Thus, considering the priority of biodiversity conservation and the importance of the Brazilian Atlantic Forest for the maintenance of endemic and endangered species, we present a robust methodology to identify the invasive species P. guajava in subtropical forest, which can be applied in management strategies for the species control and eradication.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Remote Sensing
Journal of Applied Remote Sensing 环境科学-成像科学与照相技术
CiteScore
3.40
自引率
11.80%
发文量
194
审稿时长
3 months
期刊介绍: The Journal of Applied Remote Sensing is a peer-reviewed journal that optimizes the communication of concepts, information, and progress among the remote sensing community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信