MOHAMMAD DIQI, I WAYAN ORDIYASA, MARSELINA ENDAH HISWATI
{"title":"利用机器学习进行肾脏疾病检测的比较分析","authors":"MOHAMMAD DIQI, I WAYAN ORDIYASA, MARSELINA ENDAH HISWATI","doi":"10.18860/mat.v15i2.21468","DOIUrl":null,"url":null,"abstract":"This research aimed to compare the performance of ten machine learning algorithms for detecting kidney disease, utilizing data from UCI Machine Learning Repository. The algorithms tested included K-Nearest Neighbour, RBF SVM, Linear SVM, Neural Net, Decision Tree, Naïve Bayes, AdaBoost, Random Forest, Gaussian Process, and QDA. The evaluation metrics used were accuracy, precision, recall, and F1-score. The findings revealed that AdaBoost was the most effective algorithm for all evaluation metrics, achieving an accuracy, precision, recall, and F1-score of 1.00. Random Forest and RBF followed closely, while Naïve Bayes and QDA had the lowest performance. These results suggest that machine learning algorithms, especially ensemble methods such as AdaBoost, can significantly improve the accuracy and efficiency of detecting kidney disease. This can lead to better patient outcomes and reduced healthcare costs.","PeriodicalId":497787,"journal":{"name":"Matics: Jurnal Teknik Informatika","volume":"36 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative Analysis of Kidney Disease Detection Using Machine Learning\",\"authors\":\"MOHAMMAD DIQI, I WAYAN ORDIYASA, MARSELINA ENDAH HISWATI\",\"doi\":\"10.18860/mat.v15i2.21468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research aimed to compare the performance of ten machine learning algorithms for detecting kidney disease, utilizing data from UCI Machine Learning Repository. The algorithms tested included K-Nearest Neighbour, RBF SVM, Linear SVM, Neural Net, Decision Tree, Naïve Bayes, AdaBoost, Random Forest, Gaussian Process, and QDA. The evaluation metrics used were accuracy, precision, recall, and F1-score. The findings revealed that AdaBoost was the most effective algorithm for all evaluation metrics, achieving an accuracy, precision, recall, and F1-score of 1.00. Random Forest and RBF followed closely, while Naïve Bayes and QDA had the lowest performance. These results suggest that machine learning algorithms, especially ensemble methods such as AdaBoost, can significantly improve the accuracy and efficiency of detecting kidney disease. This can lead to better patient outcomes and reduced healthcare costs.\",\"PeriodicalId\":497787,\"journal\":{\"name\":\"Matics: Jurnal Teknik Informatika\",\"volume\":\"36 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matics: Jurnal Teknik Informatika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18860/mat.v15i2.21468\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matics: Jurnal Teknik Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18860/mat.v15i2.21468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparative Analysis of Kidney Disease Detection Using Machine Learning
This research aimed to compare the performance of ten machine learning algorithms for detecting kidney disease, utilizing data from UCI Machine Learning Repository. The algorithms tested included K-Nearest Neighbour, RBF SVM, Linear SVM, Neural Net, Decision Tree, Naïve Bayes, AdaBoost, Random Forest, Gaussian Process, and QDA. The evaluation metrics used were accuracy, precision, recall, and F1-score. The findings revealed that AdaBoost was the most effective algorithm for all evaluation metrics, achieving an accuracy, precision, recall, and F1-score of 1.00. Random Forest and RBF followed closely, while Naïve Bayes and QDA had the lowest performance. These results suggest that machine learning algorithms, especially ensemble methods such as AdaBoost, can significantly improve the accuracy and efficiency of detecting kidney disease. This can lead to better patient outcomes and reduced healthcare costs.