{"title":"通过整合区块链和机器学习方法,实现智能社区的安全能源交易","authors":"Athira Jayavarma, None Preetha, Manjula G Nair","doi":"10.1080/23080477.2023.2270820","DOIUrl":null,"url":null,"abstract":"ABSTRACTIn today’s smart communities, small-scale energy systems are essential for sustainable development and efficient resource management. However, ensuring the confidentiality, safety, and accurate prediction of energy consumption patterns in energy trading is a major challenge. To address these issues, an innovative solution that synergistically combines two cutting-edge technologies: blockchain and machine learning is proposed. This paper unveils a novel approach that harmoniously merges blockchain with the Recalling-Enhanced Recurrent Neural Network (RERNN) to revolutionize energy trading systems called ‘Blockchain-Enhanced Energy Trading with Recalling-Enhanced Recurrent Neural Network (BET-RERNN).’ Data from IoT-enabled smart devices is securely stored in blockchain blocks, ensuring data integrity and immutability. Blockchain’s decentralized nature creates a trust-less environment for energy trading, protecting the privacy and anonymity of participants while maintaining transparency. At the heart of our system lies the advanced machine-learning capabilities of the RERNN model. By processing the data stored on the blockchain, RERNN accurately predicts optimal power generation for small-scale energy systems, enabling smart communities to make informed decisions and optimize their energy consumption. The BET-RERNN scheme provides a plethora of strengths. First, participants can securely engage in energy trading without compromising sensitive information, fostering a more resilient and efficient market. Second, blockchain technology ensures that all energy-related data is protected from tampering and unauthorized access, ensuring system reliability and trust. An in-depth comparison of RERNN’s performance to traditional General Regression Neural Network (GRNN) and Gradient Boost Decision Tree (GBDT) methods is conducted. To verify the strategy’s effectiveness, MATLAB simulations are employed, demonstrating its real-world applicability and scalability. By combining blockchain and machine learning, a secure and privacy-preserving smart community is established, promoting sustainable energy practices for a greener future.KEYWORDS: Machine learningblockchainRecalling-Enhanced Recurrent Neural Networkpeer-to-peer energy tradingsmart communityinternet of Things Disclosure statementNo potential conflict of interest was reported by the author(s).","PeriodicalId":53436,"journal":{"name":"Smart Science","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A secure energy trading in a smart community by integrating Blockchain and machine learning approach\",\"authors\":\"Athira Jayavarma, None Preetha, Manjula G Nair\",\"doi\":\"10.1080/23080477.2023.2270820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACTIn today’s smart communities, small-scale energy systems are essential for sustainable development and efficient resource management. However, ensuring the confidentiality, safety, and accurate prediction of energy consumption patterns in energy trading is a major challenge. To address these issues, an innovative solution that synergistically combines two cutting-edge technologies: blockchain and machine learning is proposed. This paper unveils a novel approach that harmoniously merges blockchain with the Recalling-Enhanced Recurrent Neural Network (RERNN) to revolutionize energy trading systems called ‘Blockchain-Enhanced Energy Trading with Recalling-Enhanced Recurrent Neural Network (BET-RERNN).’ Data from IoT-enabled smart devices is securely stored in blockchain blocks, ensuring data integrity and immutability. Blockchain’s decentralized nature creates a trust-less environment for energy trading, protecting the privacy and anonymity of participants while maintaining transparency. At the heart of our system lies the advanced machine-learning capabilities of the RERNN model. By processing the data stored on the blockchain, RERNN accurately predicts optimal power generation for small-scale energy systems, enabling smart communities to make informed decisions and optimize their energy consumption. The BET-RERNN scheme provides a plethora of strengths. First, participants can securely engage in energy trading without compromising sensitive information, fostering a more resilient and efficient market. Second, blockchain technology ensures that all energy-related data is protected from tampering and unauthorized access, ensuring system reliability and trust. An in-depth comparison of RERNN’s performance to traditional General Regression Neural Network (GRNN) and Gradient Boost Decision Tree (GBDT) methods is conducted. To verify the strategy’s effectiveness, MATLAB simulations are employed, demonstrating its real-world applicability and scalability. By combining blockchain and machine learning, a secure and privacy-preserving smart community is established, promoting sustainable energy practices for a greener future.KEYWORDS: Machine learningblockchainRecalling-Enhanced Recurrent Neural Networkpeer-to-peer energy tradingsmart communityinternet of Things Disclosure statementNo potential conflict of interest was reported by the author(s).\",\"PeriodicalId\":53436,\"journal\":{\"name\":\"Smart Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23080477.2023.2270820\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23080477.2023.2270820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
A secure energy trading in a smart community by integrating Blockchain and machine learning approach
ABSTRACTIn today’s smart communities, small-scale energy systems are essential for sustainable development and efficient resource management. However, ensuring the confidentiality, safety, and accurate prediction of energy consumption patterns in energy trading is a major challenge. To address these issues, an innovative solution that synergistically combines two cutting-edge technologies: blockchain and machine learning is proposed. This paper unveils a novel approach that harmoniously merges blockchain with the Recalling-Enhanced Recurrent Neural Network (RERNN) to revolutionize energy trading systems called ‘Blockchain-Enhanced Energy Trading with Recalling-Enhanced Recurrent Neural Network (BET-RERNN).’ Data from IoT-enabled smart devices is securely stored in blockchain blocks, ensuring data integrity and immutability. Blockchain’s decentralized nature creates a trust-less environment for energy trading, protecting the privacy and anonymity of participants while maintaining transparency. At the heart of our system lies the advanced machine-learning capabilities of the RERNN model. By processing the data stored on the blockchain, RERNN accurately predicts optimal power generation for small-scale energy systems, enabling smart communities to make informed decisions and optimize their energy consumption. The BET-RERNN scheme provides a plethora of strengths. First, participants can securely engage in energy trading without compromising sensitive information, fostering a more resilient and efficient market. Second, blockchain technology ensures that all energy-related data is protected from tampering and unauthorized access, ensuring system reliability and trust. An in-depth comparison of RERNN’s performance to traditional General Regression Neural Network (GRNN) and Gradient Boost Decision Tree (GBDT) methods is conducted. To verify the strategy’s effectiveness, MATLAB simulations are employed, demonstrating its real-world applicability and scalability. By combining blockchain and machine learning, a secure and privacy-preserving smart community is established, promoting sustainable energy practices for a greener future.KEYWORDS: Machine learningblockchainRecalling-Enhanced Recurrent Neural Networkpeer-to-peer energy tradingsmart communityinternet of Things Disclosure statementNo potential conflict of interest was reported by the author(s).
期刊介绍:
Smart Science (ISSN 2308-0477) is an international, peer-reviewed journal that publishes significant original scientific researches, and reviews and analyses of current research and science policy. We welcome submissions of high quality papers from all fields of science and from any source. Articles of an interdisciplinary nature are particularly welcomed. Smart Science aims to be among the top multidisciplinary journals covering a broad spectrum of smart topics in the fields of materials science, chemistry, physics, engineering, medicine, and biology. Smart Science is currently focusing on the topics of Smart Manufacturing (CPS, IoT and AI) for Industry 4.0, Smart Energy and Smart Chemistry and Materials. Other specific research areas covered by the journal include, but are not limited to: 1. Smart Science in the Future 2. Smart Manufacturing: -Cyber-Physical System (CPS) -Internet of Things (IoT) and Internet of Brain (IoB) -Artificial Intelligence -Smart Computing -Smart Design/Machine -Smart Sensing -Smart Information and Networks 3. Smart Energy and Thermal/Fluidic Science 4. Smart Chemistry and Materials