{"title":"异质性的非参数时变面板数据模型","authors":"Fei Liu","doi":"10.1017/s0266466623000324","DOIUrl":null,"url":null,"abstract":"Abstract Since Bai (2009, Econometrica 77, 1229–1279), considerable extensions have been made to panel data models with interactive fixed effects (IFEs). However, little work has been conducted to understand the associated iterative algorithm, which, to the best of our knowledge, is the most commonly adopted approach in this line of research. In this paper, we refine the algorithm of panel data models with IFEs using the nuclear-norm penalization method and duple least-squares (DLS) iterations. Meanwhile, we allow the regression coefficients to be individual-specific and evolve over time. Accordingly, asymptotic properties are established to demonstrate the theoretical validity of the proposed approach. Furthermore, we show that the proposed methodology exhibits good finite-sample performance using simulation and real data examples.","PeriodicalId":49275,"journal":{"name":"Econometric Theory","volume":"2003 45","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NONPARAMETRIC TIME-VARYING PANEL DATA MODELS WITH HETEROGENEITY\",\"authors\":\"Fei Liu\",\"doi\":\"10.1017/s0266466623000324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Since Bai (2009, Econometrica 77, 1229–1279), considerable extensions have been made to panel data models with interactive fixed effects (IFEs). However, little work has been conducted to understand the associated iterative algorithm, which, to the best of our knowledge, is the most commonly adopted approach in this line of research. In this paper, we refine the algorithm of panel data models with IFEs using the nuclear-norm penalization method and duple least-squares (DLS) iterations. Meanwhile, we allow the regression coefficients to be individual-specific and evolve over time. Accordingly, asymptotic properties are established to demonstrate the theoretical validity of the proposed approach. Furthermore, we show that the proposed methodology exhibits good finite-sample performance using simulation and real data examples.\",\"PeriodicalId\":49275,\"journal\":{\"name\":\"Econometric Theory\",\"volume\":\"2003 45\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometric Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/s0266466623000324\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0266466623000324","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
NONPARAMETRIC TIME-VARYING PANEL DATA MODELS WITH HETEROGENEITY
Abstract Since Bai (2009, Econometrica 77, 1229–1279), considerable extensions have been made to panel data models with interactive fixed effects (IFEs). However, little work has been conducted to understand the associated iterative algorithm, which, to the best of our knowledge, is the most commonly adopted approach in this line of research. In this paper, we refine the algorithm of panel data models with IFEs using the nuclear-norm penalization method and duple least-squares (DLS) iterations. Meanwhile, we allow the regression coefficients to be individual-specific and evolve over time. Accordingly, asymptotic properties are established to demonstrate the theoretical validity of the proposed approach. Furthermore, we show that the proposed methodology exhibits good finite-sample performance using simulation and real data examples.
Econometric TheoryMATHEMATICS, INTERDISCIPLINARY APPLICATIONS-STATISTICS & PROBABILITY
CiteScore
1.90
自引率
0.00%
发文量
52
审稿时长
>12 weeks
期刊介绍:
Since its inception, Econometric Theory has aimed to endow econometrics with an innovative journal dedicated to advance theoretical research in econometrics. It provides a centralized professional outlet for original theoretical contributions in all of the major areas of econometrics, and all fields of research in econometric theory fall within the scope of ET. In addition, ET fosters the multidisciplinary features of econometrics that extend beyond economics. Particularly welcome are articles that promote original econometric research in relation to mathematical finance, stochastic processes, statistics, and probability theory, as well as computationally intensive areas of economics such as modern industrial organization and dynamic macroeconomics.