{"title":"带有孔洞和裂缝的类岩石样品的宏观-微观力学行为研究","authors":"Dongmei Huang, Shuyu Qiao, Xikun Chang, Xinzhao Wang, Huanhuan Lu, Xin Pan","doi":"10.1007/s40571-023-00674-y","DOIUrl":null,"url":null,"abstract":"<div><p>There are many holes and cracks in the rock, which significantly affect the strength of the rock mass. In this paper, the influence of holes and crack spacing on the uniaxial compressive strength and failure mode of rock samples with holes and cracks is studied. Through uniaxial compression testing, the macroscopic mechanical behavior of rock-like samples is summarized. Based on the experimental results, the microscopic parameters of the numerical model established in PFC<sup>3D</sup> are calibrated. Then, the uniaxial loading process is simulated to verify the numerical model. According to the simulation results, the influence of holes and crack spacing on the micro-failure mechanism of rock-like samples is analyzed from the perspective of mechanical properties, particle displacement, and failure mode. The results show that the uniaxial compressive strength and elastic modulus of the sample with holes are lower than those of the intact sample, but higher than those of the sample with single hole and double cracks. As the spacing between cracks increases, the peak strength and elastic modulus of the sample show a trend of first increasing and then decreasing. The maximum displacement of particles and the number of microcracks both show a trend of first increasing and then decreasing. During the loading process, there is a phenomenon of stress concentration on both sides of the hole and the crack tip, which can generate a large number of microcracks. Acoustic emission events can be divided into three stages: silent emission stage, stable stage, and rapid growth stage. The damage evolution process of the specimen can be divided into three stages: no damage stage, stable damage growth stage, and damage failure stage.</p></div>","PeriodicalId":524,"journal":{"name":"Computational Particle Mechanics","volume":"11 4","pages":"1579 - 1598"},"PeriodicalIF":2.8000,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on macro–micro mechanical behavior of rock like samples with hole and cracks\",\"authors\":\"Dongmei Huang, Shuyu Qiao, Xikun Chang, Xinzhao Wang, Huanhuan Lu, Xin Pan\",\"doi\":\"10.1007/s40571-023-00674-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>There are many holes and cracks in the rock, which significantly affect the strength of the rock mass. In this paper, the influence of holes and crack spacing on the uniaxial compressive strength and failure mode of rock samples with holes and cracks is studied. Through uniaxial compression testing, the macroscopic mechanical behavior of rock-like samples is summarized. Based on the experimental results, the microscopic parameters of the numerical model established in PFC<sup>3D</sup> are calibrated. Then, the uniaxial loading process is simulated to verify the numerical model. According to the simulation results, the influence of holes and crack spacing on the micro-failure mechanism of rock-like samples is analyzed from the perspective of mechanical properties, particle displacement, and failure mode. The results show that the uniaxial compressive strength and elastic modulus of the sample with holes are lower than those of the intact sample, but higher than those of the sample with single hole and double cracks. As the spacing between cracks increases, the peak strength and elastic modulus of the sample show a trend of first increasing and then decreasing. The maximum displacement of particles and the number of microcracks both show a trend of first increasing and then decreasing. During the loading process, there is a phenomenon of stress concentration on both sides of the hole and the crack tip, which can generate a large number of microcracks. Acoustic emission events can be divided into three stages: silent emission stage, stable stage, and rapid growth stage. The damage evolution process of the specimen can be divided into three stages: no damage stage, stable damage growth stage, and damage failure stage.</p></div>\",\"PeriodicalId\":524,\"journal\":{\"name\":\"Computational Particle Mechanics\",\"volume\":\"11 4\",\"pages\":\"1579 - 1598\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Particle Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40571-023-00674-y\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Particle Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s40571-023-00674-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Study on macro–micro mechanical behavior of rock like samples with hole and cracks
There are many holes and cracks in the rock, which significantly affect the strength of the rock mass. In this paper, the influence of holes and crack spacing on the uniaxial compressive strength and failure mode of rock samples with holes and cracks is studied. Through uniaxial compression testing, the macroscopic mechanical behavior of rock-like samples is summarized. Based on the experimental results, the microscopic parameters of the numerical model established in PFC3D are calibrated. Then, the uniaxial loading process is simulated to verify the numerical model. According to the simulation results, the influence of holes and crack spacing on the micro-failure mechanism of rock-like samples is analyzed from the perspective of mechanical properties, particle displacement, and failure mode. The results show that the uniaxial compressive strength and elastic modulus of the sample with holes are lower than those of the intact sample, but higher than those of the sample with single hole and double cracks. As the spacing between cracks increases, the peak strength and elastic modulus of the sample show a trend of first increasing and then decreasing. The maximum displacement of particles and the number of microcracks both show a trend of first increasing and then decreasing. During the loading process, there is a phenomenon of stress concentration on both sides of the hole and the crack tip, which can generate a large number of microcracks. Acoustic emission events can be divided into three stages: silent emission stage, stable stage, and rapid growth stage. The damage evolution process of the specimen can be divided into three stages: no damage stage, stable damage growth stage, and damage failure stage.
期刊介绍:
GENERAL OBJECTIVES: Computational Particle Mechanics (CPM) is a quarterly journal with the goal of publishing full-length original articles addressing the modeling and simulation of systems involving particles and particle methods. The goal is to enhance communication among researchers in the applied sciences who use "particles'''' in one form or another in their research.
SPECIFIC OBJECTIVES: Particle-based materials and numerical methods have become wide-spread in the natural and applied sciences, engineering, biology. The term "particle methods/mechanics'''' has now come to imply several different things to researchers in the 21st century, including:
(a) Particles as a physical unit in granular media, particulate flows, plasmas, swarms, etc.,
(b) Particles representing material phases in continua at the meso-, micro-and nano-scale and
(c) Particles as a discretization unit in continua and discontinua in numerical methods such as
Discrete Element Methods (DEM), Particle Finite Element Methods (PFEM), Molecular Dynamics (MD), and Smoothed Particle Hydrodynamics (SPH), to name a few.