基于格林函数和一种新的迭代格式的Bratu边值问题的数值解

IF 1 4区 数学 Q1 MATHEMATICS
Junaid Ahmad, Muhammad Arshad, Kifayat Ullah, Zhenhua Ma
{"title":"基于格林函数和一种新的迭代格式的Bratu边值问题的数值解","authors":"Junaid Ahmad, Muhammad Arshad, Kifayat Ullah, Zhenhua Ma","doi":"10.1186/s13661-023-01791-6","DOIUrl":null,"url":null,"abstract":"Abstract We compute the numerical solution of the Bratu’s boundary value problem (BVP) on a Banach space setting. To do this, we embed a Green’s function into a new two-step iteration scheme. After this, under some assumptions, we show that this new iterative scheme converges to a sought solution of the one-dimensional non-linear Bratu’s BVP. Furthermore, we show that the suggested new iterative scheme is essentially weak $w^{2}$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mi>w</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:math> -stable in this setting. We perform some numerical computations and compare our findings with some other iterative schemes of the literature. Numerical results show that our new approach is numerically highly accurate and stable with respect to different set of parameters.","PeriodicalId":55333,"journal":{"name":"Boundary Value Problems","volume":"SE-6 2","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical solution of Bratu’s boundary value problem based on Green’s function and a novel iterative scheme\",\"authors\":\"Junaid Ahmad, Muhammad Arshad, Kifayat Ullah, Zhenhua Ma\",\"doi\":\"10.1186/s13661-023-01791-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We compute the numerical solution of the Bratu’s boundary value problem (BVP) on a Banach space setting. To do this, we embed a Green’s function into a new two-step iteration scheme. After this, under some assumptions, we show that this new iterative scheme converges to a sought solution of the one-dimensional non-linear Bratu’s BVP. Furthermore, we show that the suggested new iterative scheme is essentially weak $w^{2}$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msup> <mml:mi>w</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:math> -stable in this setting. We perform some numerical computations and compare our findings with some other iterative schemes of the literature. Numerical results show that our new approach is numerically highly accurate and stable with respect to different set of parameters.\",\"PeriodicalId\":55333,\"journal\":{\"name\":\"Boundary Value Problems\",\"volume\":\"SE-6 2\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Boundary Value Problems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13661-023-01791-6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boundary Value Problems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13661-023-01791-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要计算了Banach空间上Bratu边值问题的数值解。为此,我们将格林函数嵌入到一个新的两步迭代方案中。然后,在一定的假设条件下,我们证明了这种新的迭代格式收敛于一维非线性Bratu’s BVP的求解。进一步,我们证明了所建议的新迭代格式本质上是弱$w^{2}$ w 2 -稳定的。我们进行了一些数值计算,并将我们的发现与文献中其他一些迭代格式进行了比较。数值结果表明,该方法具有较高的数值精度和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical solution of Bratu’s boundary value problem based on Green’s function and a novel iterative scheme
Abstract We compute the numerical solution of the Bratu’s boundary value problem (BVP) on a Banach space setting. To do this, we embed a Green’s function into a new two-step iteration scheme. After this, under some assumptions, we show that this new iterative scheme converges to a sought solution of the one-dimensional non-linear Bratu’s BVP. Furthermore, we show that the suggested new iterative scheme is essentially weak $w^{2}$ w 2 -stable in this setting. We perform some numerical computations and compare our findings with some other iterative schemes of the literature. Numerical results show that our new approach is numerically highly accurate and stable with respect to different set of parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Boundary Value Problems
Boundary Value Problems 数学-数学
自引率
5.90%
发文量
83
审稿时长
3 months
期刊介绍: The main aim of Boundary Value Problems is to provide a forum to promote, encourage, and bring together various disciplines which use the theory, methods, and applications of boundary value problems. Boundary Value Problems will publish very high quality research articles on boundary value problems for ordinary, functional, difference, elliptic, parabolic, and hyperbolic differential equations. Articles on singular, free, and ill-posed boundary value problems, and other areas of abstract and concrete analysis are welcome. In addition to regular research articles, Boundary Value Problems will publish review articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信