激光加工316L不锈钢粉末床熔接疲劳强度和冲击韧性与取向和层厚的关系

IF 1.7 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Timo Rautio, Matias Jaskari, Markku Keskitalo, Joonas Päkkilä, Antti Järvenpää
{"title":"激光加工316L不锈钢粉末床熔接疲劳强度和冲击韧性与取向和层厚的关系","authors":"Timo Rautio, Matias Jaskari, Markku Keskitalo, Joonas Päkkilä, Antti Järvenpää","doi":"10.2351/7.0001113","DOIUrl":null,"url":null,"abstract":"Additive manufacturing is an enticing way of producing complex geometries and optimized parts for special applications. Even though the achievable static properties for the printed material are usually good when compared to wrought materials, in many cases dynamic properties are known to be much worse. Often, the quality is sacrificed in respect of printing speed. Furthermore, printed materials have usually anisotropic behavior, caused by the remelting and fast cooling of each deposited layer. This means that the mechanical properties need to be measured in several directions in respect of the printing direction for attaining a more holistic approach to the achieved static and dynamic behavior. As a demonstration, this study focuses on determining the properties of 316L stainless steel-manufactured with laser powder bed fusion. A comprehensive set of samples for various testing methods were manufactured to investigate the effect of the layer thickness and printing orientation on the microstructure, mechanical properties, impact strength, and fatigue life. Fatigue performance of the material was evaluated in both axial and flexural bending comparing as-built and polished surface conditions. Bending fatigue testing revealed that a fatigue limit of 100 MPa at best can be achieved with the as-built surface quality, but with a polished surface and lower layer thickness, it could be doubled. Impact toughness and mechanical strength of the material are heavily dependent on the layer thickness, and while the best results were obtained with the lower layer thickness, the printing orientation can have a detrimental effect on it.","PeriodicalId":50168,"journal":{"name":"Journal of Laser Applications","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fatigue strength and impact toughness dependence of powder bed fusion with laser beam-manufactured 316L stainless steel on orientation and layer thickness\",\"authors\":\"Timo Rautio, Matias Jaskari, Markku Keskitalo, Joonas Päkkilä, Antti Järvenpää\",\"doi\":\"10.2351/7.0001113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Additive manufacturing is an enticing way of producing complex geometries and optimized parts for special applications. Even though the achievable static properties for the printed material are usually good when compared to wrought materials, in many cases dynamic properties are known to be much worse. Often, the quality is sacrificed in respect of printing speed. Furthermore, printed materials have usually anisotropic behavior, caused by the remelting and fast cooling of each deposited layer. This means that the mechanical properties need to be measured in several directions in respect of the printing direction for attaining a more holistic approach to the achieved static and dynamic behavior. As a demonstration, this study focuses on determining the properties of 316L stainless steel-manufactured with laser powder bed fusion. A comprehensive set of samples for various testing methods were manufactured to investigate the effect of the layer thickness and printing orientation on the microstructure, mechanical properties, impact strength, and fatigue life. Fatigue performance of the material was evaluated in both axial and flexural bending comparing as-built and polished surface conditions. Bending fatigue testing revealed that a fatigue limit of 100 MPa at best can be achieved with the as-built surface quality, but with a polished surface and lower layer thickness, it could be doubled. Impact toughness and mechanical strength of the material are heavily dependent on the layer thickness, and while the best results were obtained with the lower layer thickness, the printing orientation can have a detrimental effect on it.\",\"PeriodicalId\":50168,\"journal\":{\"name\":\"Journal of Laser Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Laser Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2351/7.0001113\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Laser Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2351/7.0001113","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

增材制造是一种生产复杂几何形状和特殊应用优化零件的诱人方法。尽管与变形材料相比,印刷材料的可实现的静态性能通常是好的,但在许多情况下,动态性能要差得多。通常情况下,质量是在印刷速度方面牺牲的。此外,印刷材料通常具有各向异性行为,这是由每层沉积的重熔和快速冷却引起的。这意味着机械性能需要在印刷方向的几个方向上进行测量,以获得更全面的方法来获得静态和动态行为。作为示范,本研究的重点是确定316L不锈钢的性能与激光粉末床熔化。制作了一套全面的样品,用于各种测试方法,以研究层厚度和印刷方向对微观结构,力学性能,冲击强度和疲劳寿命的影响。材料的疲劳性能在轴向和弯曲弯曲两方面进行了评估,比较了建成和抛光的表面条件。弯曲疲劳试验表明,在原有表面质量条件下,弯曲疲劳极限最高可达到100 MPa,但在抛光表面和较低的层厚条件下,弯曲疲劳极限可提高一倍。材料的冲击韧性和机械强度很大程度上取决于层厚,而层厚越低,效果越好,但印刷方向对其有不利影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fatigue strength and impact toughness dependence of powder bed fusion with laser beam-manufactured 316L stainless steel on orientation and layer thickness
Additive manufacturing is an enticing way of producing complex geometries and optimized parts for special applications. Even though the achievable static properties for the printed material are usually good when compared to wrought materials, in many cases dynamic properties are known to be much worse. Often, the quality is sacrificed in respect of printing speed. Furthermore, printed materials have usually anisotropic behavior, caused by the remelting and fast cooling of each deposited layer. This means that the mechanical properties need to be measured in several directions in respect of the printing direction for attaining a more holistic approach to the achieved static and dynamic behavior. As a demonstration, this study focuses on determining the properties of 316L stainless steel-manufactured with laser powder bed fusion. A comprehensive set of samples for various testing methods were manufactured to investigate the effect of the layer thickness and printing orientation on the microstructure, mechanical properties, impact strength, and fatigue life. Fatigue performance of the material was evaluated in both axial and flexural bending comparing as-built and polished surface conditions. Bending fatigue testing revealed that a fatigue limit of 100 MPa at best can be achieved with the as-built surface quality, but with a polished surface and lower layer thickness, it could be doubled. Impact toughness and mechanical strength of the material are heavily dependent on the layer thickness, and while the best results were obtained with the lower layer thickness, the printing orientation can have a detrimental effect on it.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.60
自引率
9.50%
发文量
125
审稿时长
>12 weeks
期刊介绍: The Journal of Laser Applications (JLA) is the scientific platform of the Laser Institute of America (LIA) and is published in cooperation with AIP Publishing. The high-quality articles cover a broad range from fundamental and applied research and development to industrial applications. Therefore, JLA is a reflection of the state-of-R&D in photonic production, sensing and measurement as well as Laser safety. The following international and well known first-class scientists serve as allocated Editors in 9 new categories: High Precision Materials Processing with Ultrafast Lasers Laser Additive Manufacturing High Power Materials Processing with High Brightness Lasers Emerging Applications of Laser Technologies in High-performance/Multi-function Materials and Structures Surface Modification Lasers in Nanomanufacturing / Nanophotonics & Thin Film Technology Spectroscopy / Imaging / Diagnostics / Measurements Laser Systems and Markets Medical Applications & Safety Thermal Transportation Nanomaterials and Nanoprocessing Laser applications in Microelectronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信