{"title":"硫酸盐人工污染天然灰泥稳定粘土的特性研究","authors":"Hamid Gadouri","doi":"10.14525/jjce.v17i4.07","DOIUrl":null,"url":null,"abstract":"The use of lime in sulfate-bearing clayey soils has historically caused structural damage to infrastructures due to the formation of an expansive ettringite mineral. In this paper, a research was conducted to study the effectiveness of natural pozzolana (NP) for providing better stabilization of sulfate-bearing soils. Compaction and free-swell potential tests were first performed on lime-stabilized grey and red clayey soils (GS and RS) containing different contents of added sodium and calcium sulfates (2, 4 and 6% Na2SO4 or CaSO4·2H2O). Then, the same tests were repeated by adding 20%NP. The test results indicated that the presence of 4% and 6% Na2SO4 in the soil resulted in an abnormal increase in the swell potential of both lime-stabilized GS and RS. The X-ray diffraction (XRD) results confirmed the growth of the ettringite mineral responsible for this higher swell potential. However, the use of 8% lime with 20%NP in stabilizing sulfate-bearing clayey soils produced significant improvements in the optimum moisture content (OMC) and maximum dry density (MDD), as well as in the swell potential. The addition of 20%NP into the lime-stabilized GS and RS eliminated the harmful effect of Na2SO4. In addition, for 120-day curing period, the use of 6% CaSO4·2H2O was found very effective by reducing the swell potential of NP-lime-stabilized GS and RS from 7.33% to 0.4% and from 2.79% to 0.2%, respectively trips. KEYWORDS: Clayey soils, Mineral additives, Sulfates, Compaction, Swell potential, Stabilization.","PeriodicalId":51814,"journal":{"name":"Jordan Journal of Civil Engineering","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Behavior of Natural Pozzolana-Lime-stabilized Clayey Soils Artificially Contaminated by Sulfates\",\"authors\":\"Hamid Gadouri\",\"doi\":\"10.14525/jjce.v17i4.07\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of lime in sulfate-bearing clayey soils has historically caused structural damage to infrastructures due to the formation of an expansive ettringite mineral. In this paper, a research was conducted to study the effectiveness of natural pozzolana (NP) for providing better stabilization of sulfate-bearing soils. Compaction and free-swell potential tests were first performed on lime-stabilized grey and red clayey soils (GS and RS) containing different contents of added sodium and calcium sulfates (2, 4 and 6% Na2SO4 or CaSO4·2H2O). Then, the same tests were repeated by adding 20%NP. The test results indicated that the presence of 4% and 6% Na2SO4 in the soil resulted in an abnormal increase in the swell potential of both lime-stabilized GS and RS. The X-ray diffraction (XRD) results confirmed the growth of the ettringite mineral responsible for this higher swell potential. However, the use of 8% lime with 20%NP in stabilizing sulfate-bearing clayey soils produced significant improvements in the optimum moisture content (OMC) and maximum dry density (MDD), as well as in the swell potential. The addition of 20%NP into the lime-stabilized GS and RS eliminated the harmful effect of Na2SO4. In addition, for 120-day curing period, the use of 6% CaSO4·2H2O was found very effective by reducing the swell potential of NP-lime-stabilized GS and RS from 7.33% to 0.4% and from 2.79% to 0.2%, respectively trips. KEYWORDS: Clayey soils, Mineral additives, Sulfates, Compaction, Swell potential, Stabilization.\",\"PeriodicalId\":51814,\"journal\":{\"name\":\"Jordan Journal of Civil Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jordan Journal of Civil Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14525/jjce.v17i4.07\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jordan Journal of Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14525/jjce.v17i4.07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Behavior of Natural Pozzolana-Lime-stabilized Clayey Soils Artificially Contaminated by Sulfates
The use of lime in sulfate-bearing clayey soils has historically caused structural damage to infrastructures due to the formation of an expansive ettringite mineral. In this paper, a research was conducted to study the effectiveness of natural pozzolana (NP) for providing better stabilization of sulfate-bearing soils. Compaction and free-swell potential tests were first performed on lime-stabilized grey and red clayey soils (GS and RS) containing different contents of added sodium and calcium sulfates (2, 4 and 6% Na2SO4 or CaSO4·2H2O). Then, the same tests were repeated by adding 20%NP. The test results indicated that the presence of 4% and 6% Na2SO4 in the soil resulted in an abnormal increase in the swell potential of both lime-stabilized GS and RS. The X-ray diffraction (XRD) results confirmed the growth of the ettringite mineral responsible for this higher swell potential. However, the use of 8% lime with 20%NP in stabilizing sulfate-bearing clayey soils produced significant improvements in the optimum moisture content (OMC) and maximum dry density (MDD), as well as in the swell potential. The addition of 20%NP into the lime-stabilized GS and RS eliminated the harmful effect of Na2SO4. In addition, for 120-day curing period, the use of 6% CaSO4·2H2O was found very effective by reducing the swell potential of NP-lime-stabilized GS and RS from 7.33% to 0.4% and from 2.79% to 0.2%, respectively trips. KEYWORDS: Clayey soils, Mineral additives, Sulfates, Compaction, Swell potential, Stabilization.
期刊介绍:
I am very pleased and honored to be appointed as an Editor-in-Chief of the Jordan Journal of Civil Engineering which enjoys an excellent reputation, both locally and internationally. Since development is the essence of life, I hope to continue developing this distinguished Journal, building on the effort of all the Editors-in-Chief and Editorial Board Members as well as Advisory Boards of the Journal since its establishment about a decade ago. I will do my best to focus on publishing high quality diverse articles and move forward in the indexing issue of the Journal.