{"title":"不同颗粒柱加筋软土三维单元胞模型的数值分析","authors":"Yousfi Amin","doi":"10.14525/jjce.v17i4.05","DOIUrl":null,"url":null,"abstract":"Recycled aggregates have been increasingly considered in recent years, owing to the limited supply of natural aggregates coupled with the corresponding carbon footprint. Recycled aggregates are aggregates prepared from construction and demolition waste. Their use aims to reduce energy consumption and contributes to reducing waste harmful to the environment. This study is based on a number of numerical tests using the finite element method of PLAXIS 3D software with the elastic-perfectly plastic behavior model and the Mohr flow criterion for all materials. A unit cell model of soft soil treated with three types of granular columns was loaded to failure: ordinary stone columns (OSCs), sand-fiber mix (SFM) and recycled aggregate porous concrete pile (RAPP). An extensive parametric study was conducted to investigate the effect of column type, friction angle, elasticity modulus, column length and geotextile effective stiffness on the behavior of soft soils. The results of numerical tests indicated that the bearing capacity of the recycled aggregate columns is three times greater than that of columns of natural aggregates. The findings of this research are given in the form of load-settlement graphs, which made it possible to release recommendations to carry out works using this technique. KEYWORDS: Soft soil, Granular column, Numerical analysis, Unit cell, Bearing capacity, PLAXIS 3D software","PeriodicalId":51814,"journal":{"name":"Jordan Journal of Civil Engineering","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Analysis of a 3D Unit Cell Model for Soft Soil Reinforced with Different Granular Columns\",\"authors\":\"Yousfi Amin\",\"doi\":\"10.14525/jjce.v17i4.05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recycled aggregates have been increasingly considered in recent years, owing to the limited supply of natural aggregates coupled with the corresponding carbon footprint. Recycled aggregates are aggregates prepared from construction and demolition waste. Their use aims to reduce energy consumption and contributes to reducing waste harmful to the environment. This study is based on a number of numerical tests using the finite element method of PLAXIS 3D software with the elastic-perfectly plastic behavior model and the Mohr flow criterion for all materials. A unit cell model of soft soil treated with three types of granular columns was loaded to failure: ordinary stone columns (OSCs), sand-fiber mix (SFM) and recycled aggregate porous concrete pile (RAPP). An extensive parametric study was conducted to investigate the effect of column type, friction angle, elasticity modulus, column length and geotextile effective stiffness on the behavior of soft soils. The results of numerical tests indicated that the bearing capacity of the recycled aggregate columns is three times greater than that of columns of natural aggregates. The findings of this research are given in the form of load-settlement graphs, which made it possible to release recommendations to carry out works using this technique. KEYWORDS: Soft soil, Granular column, Numerical analysis, Unit cell, Bearing capacity, PLAXIS 3D software\",\"PeriodicalId\":51814,\"journal\":{\"name\":\"Jordan Journal of Civil Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jordan Journal of Civil Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14525/jjce.v17i4.05\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jordan Journal of Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14525/jjce.v17i4.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Numerical Analysis of a 3D Unit Cell Model for Soft Soil Reinforced with Different Granular Columns
Recycled aggregates have been increasingly considered in recent years, owing to the limited supply of natural aggregates coupled with the corresponding carbon footprint. Recycled aggregates are aggregates prepared from construction and demolition waste. Their use aims to reduce energy consumption and contributes to reducing waste harmful to the environment. This study is based on a number of numerical tests using the finite element method of PLAXIS 3D software with the elastic-perfectly plastic behavior model and the Mohr flow criterion for all materials. A unit cell model of soft soil treated with three types of granular columns was loaded to failure: ordinary stone columns (OSCs), sand-fiber mix (SFM) and recycled aggregate porous concrete pile (RAPP). An extensive parametric study was conducted to investigate the effect of column type, friction angle, elasticity modulus, column length and geotextile effective stiffness on the behavior of soft soils. The results of numerical tests indicated that the bearing capacity of the recycled aggregate columns is three times greater than that of columns of natural aggregates. The findings of this research are given in the form of load-settlement graphs, which made it possible to release recommendations to carry out works using this technique. KEYWORDS: Soft soil, Granular column, Numerical analysis, Unit cell, Bearing capacity, PLAXIS 3D software
期刊介绍:
I am very pleased and honored to be appointed as an Editor-in-Chief of the Jordan Journal of Civil Engineering which enjoys an excellent reputation, both locally and internationally. Since development is the essence of life, I hope to continue developing this distinguished Journal, building on the effort of all the Editors-in-Chief and Editorial Board Members as well as Advisory Boards of the Journal since its establishment about a decade ago. I will do my best to focus on publishing high quality diverse articles and move forward in the indexing issue of the Journal.