电化学法同时去除废水中的磷酸盐和硝酸盐:响应面法的技术经济评价

IF 2.9 Q2 ELECTROCHEMISTRY
Judicaël Ano, Bi Gouessé Henri Briton, Alain Stéphane Assémian, Patrick Drogui, Kouassi Benjamin Yao, Kopoin Adouby
{"title":"电化学法同时去除废水中的磷酸盐和硝酸盐:响应面法的技术经济评价","authors":"Judicaël Ano, Bi Gouessé Henri Briton, Alain Stéphane Assémian, Patrick Drogui, Kouassi Benjamin Yao, Kopoin Adouby","doi":"10.5599/jese.2052","DOIUrl":null,"url":null,"abstract":"In this study, a new multiobjective optimization of the simultaneous removal of phosphates and nitrates by electrocoagulation was studied using the Box-Behnken design. Ten aluminium electrodes, connected in a monopolar configuration in a batch reactor, were immersed in synthetic wastewater and then in real wastewater. The optimal conditions and the effects of parameters (current intensity, electrolysis time and initial pH) on phosphate and nitrate removal, the formation of by-products, and the operating cost were assessed in the case of synthetic wastewater. This optimization allowed to eliminate 89.21 % of phos­phates, 69.06 % of nitrates with an operating cost of 3.44 USD m-3 against 13.67 mg L-1 of ammonium generated. Optimal conditions applied to real domestic wastewater made it possible to remove 93 % of phosphates and 90.3 % of nitrates with an ammonium residual of 30.9 mg L-1. The addition of sodium chloride reduced the residual ammonium content to 2.95 mg L-1. Further, XRD analysis of the sludge showed poor crystal structure and the FTIR spectrum suggested that the phosphate is removed by adsorption and co-precipitation.","PeriodicalId":15660,"journal":{"name":"Journal of Electrochemical Science and Engineering","volume":"40 1","pages":"0"},"PeriodicalIF":2.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simultaneous phosphates and nitrates removal from waste-waters by electrochemical process: Techno-economical assessment through response surface methodology\",\"authors\":\"Judicaël Ano, Bi Gouessé Henri Briton, Alain Stéphane Assémian, Patrick Drogui, Kouassi Benjamin Yao, Kopoin Adouby\",\"doi\":\"10.5599/jese.2052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, a new multiobjective optimization of the simultaneous removal of phosphates and nitrates by electrocoagulation was studied using the Box-Behnken design. Ten aluminium electrodes, connected in a monopolar configuration in a batch reactor, were immersed in synthetic wastewater and then in real wastewater. The optimal conditions and the effects of parameters (current intensity, electrolysis time and initial pH) on phosphate and nitrate removal, the formation of by-products, and the operating cost were assessed in the case of synthetic wastewater. This optimization allowed to eliminate 89.21 % of phos­phates, 69.06 % of nitrates with an operating cost of 3.44 USD m-3 against 13.67 mg L-1 of ammonium generated. Optimal conditions applied to real domestic wastewater made it possible to remove 93 % of phosphates and 90.3 % of nitrates with an ammonium residual of 30.9 mg L-1. The addition of sodium chloride reduced the residual ammonium content to 2.95 mg L-1. Further, XRD analysis of the sludge showed poor crystal structure and the FTIR spectrum suggested that the phosphate is removed by adsorption and co-precipitation.\",\"PeriodicalId\":15660,\"journal\":{\"name\":\"Journal of Electrochemical Science and Engineering\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electrochemical Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5599/jese.2052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrochemical Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5599/jese.2052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用Box-Behnken设计,对电凝法同时去除磷酸盐和硝酸盐的多目标优化进行了研究。10个铝电极在间歇反应器中以单极结构连接,浸入合成废水中,然后浸入真实废水中。以合成废水为例,考察了最佳工艺条件及各参数(电流强度、电解时间、初始pH)对磷酸盐和硝酸盐脱除、副产物生成和运行成本的影响。该优化方法可去除89.21%的磷酸盐和69.06%的硝酸盐,运行成本为3.44美元/立方米,生成的铵为13.67 mg -1。应用于实际生活废水的最佳条件,可以去除93%的磷酸盐和90.3%的硝酸盐,剩余铵为30.9 mg L-1。氯化钠的加入使残余铵含量降至2.95 mg L-1。此外,对污泥的XRD分析表明其晶体结构较差,FTIR光谱表明磷酸盐是通过吸附和共沉淀法去除的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simultaneous phosphates and nitrates removal from waste-waters by electrochemical process: Techno-economical assessment through response surface methodology
In this study, a new multiobjective optimization of the simultaneous removal of phosphates and nitrates by electrocoagulation was studied using the Box-Behnken design. Ten aluminium electrodes, connected in a monopolar configuration in a batch reactor, were immersed in synthetic wastewater and then in real wastewater. The optimal conditions and the effects of parameters (current intensity, electrolysis time and initial pH) on phosphate and nitrate removal, the formation of by-products, and the operating cost were assessed in the case of synthetic wastewater. This optimization allowed to eliminate 89.21 % of phos­phates, 69.06 % of nitrates with an operating cost of 3.44 USD m-3 against 13.67 mg L-1 of ammonium generated. Optimal conditions applied to real domestic wastewater made it possible to remove 93 % of phosphates and 90.3 % of nitrates with an ammonium residual of 30.9 mg L-1. The addition of sodium chloride reduced the residual ammonium content to 2.95 mg L-1. Further, XRD analysis of the sludge showed poor crystal structure and the FTIR spectrum suggested that the phosphate is removed by adsorption and co-precipitation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.60
自引率
27.30%
发文量
90
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信