{"title":"考虑冻融循环和地应力的寒区隧道冻胀压力解析解","authors":"Wang-Tao Jiang","doi":"10.14525/jjce.v17i4.09","DOIUrl":null,"url":null,"abstract":"The damage caused by the frost heaving pressure on the surrounding rocks and lining structure of cold-region tunnels is always common, which can seriously threaten the safety and stability for cold-region tunnels. Although many achievements of frost heave pressure model have been obtained, two factors have been often ignored, which are in-situ stress and freeze-thaw cycles. Therefore, the calculation mechanical model of coldregion tunnels is established and the expression of frost heaving pressure considering frost heaving effect and in-situ stress is derived based on the elastic theory. The relationship between the elastic modulus of surrounding rocks and the number of freeze-thaw cycles was fitted by experimental data and the calculation formula of frost heaving rate of rocks considering their porosity change caused by freeze-thaw cycles is derived. Based on that, the calculation method of frost heaving pressure considering in-situ stress and freeze-thaw cycles is proposed. The example analysis results show that frost heaving ratio and frost heaving pressure gradually increase with freeze-thaw cycles, which are eventually subjected to a steady value. Simultaneously, the frost heaving pressure acting on lining increases with in-situ stress for tunnels in cold regions and some effective insulation measures should be applied to prevent frost damage. KEYWORDS: Frost heaving pressure, Cold-region tunnels, Freeze-thaw cycles, Analytical solution, Zero-frost heave displacemen","PeriodicalId":51814,"journal":{"name":"Jordan Journal of Civil Engineering","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Analytical Solution of Frost Heaving Pressure for Cold-region Tunnel Considering Freeze-thaw Cycles and in-situ Stress\",\"authors\":\"Wang-Tao Jiang\",\"doi\":\"10.14525/jjce.v17i4.09\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The damage caused by the frost heaving pressure on the surrounding rocks and lining structure of cold-region tunnels is always common, which can seriously threaten the safety and stability for cold-region tunnels. Although many achievements of frost heave pressure model have been obtained, two factors have been often ignored, which are in-situ stress and freeze-thaw cycles. Therefore, the calculation mechanical model of coldregion tunnels is established and the expression of frost heaving pressure considering frost heaving effect and in-situ stress is derived based on the elastic theory. The relationship between the elastic modulus of surrounding rocks and the number of freeze-thaw cycles was fitted by experimental data and the calculation formula of frost heaving rate of rocks considering their porosity change caused by freeze-thaw cycles is derived. Based on that, the calculation method of frost heaving pressure considering in-situ stress and freeze-thaw cycles is proposed. The example analysis results show that frost heaving ratio and frost heaving pressure gradually increase with freeze-thaw cycles, which are eventually subjected to a steady value. Simultaneously, the frost heaving pressure acting on lining increases with in-situ stress for tunnels in cold regions and some effective insulation measures should be applied to prevent frost damage. KEYWORDS: Frost heaving pressure, Cold-region tunnels, Freeze-thaw cycles, Analytical solution, Zero-frost heave displacemen\",\"PeriodicalId\":51814,\"journal\":{\"name\":\"Jordan Journal of Civil Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jordan Journal of Civil Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14525/jjce.v17i4.09\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jordan Journal of Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14525/jjce.v17i4.09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
An Analytical Solution of Frost Heaving Pressure for Cold-region Tunnel Considering Freeze-thaw Cycles and in-situ Stress
The damage caused by the frost heaving pressure on the surrounding rocks and lining structure of cold-region tunnels is always common, which can seriously threaten the safety and stability for cold-region tunnels. Although many achievements of frost heave pressure model have been obtained, two factors have been often ignored, which are in-situ stress and freeze-thaw cycles. Therefore, the calculation mechanical model of coldregion tunnels is established and the expression of frost heaving pressure considering frost heaving effect and in-situ stress is derived based on the elastic theory. The relationship between the elastic modulus of surrounding rocks and the number of freeze-thaw cycles was fitted by experimental data and the calculation formula of frost heaving rate of rocks considering their porosity change caused by freeze-thaw cycles is derived. Based on that, the calculation method of frost heaving pressure considering in-situ stress and freeze-thaw cycles is proposed. The example analysis results show that frost heaving ratio and frost heaving pressure gradually increase with freeze-thaw cycles, which are eventually subjected to a steady value. Simultaneously, the frost heaving pressure acting on lining increases with in-situ stress for tunnels in cold regions and some effective insulation measures should be applied to prevent frost damage. KEYWORDS: Frost heaving pressure, Cold-region tunnels, Freeze-thaw cycles, Analytical solution, Zero-frost heave displacemen
期刊介绍:
I am very pleased and honored to be appointed as an Editor-in-Chief of the Jordan Journal of Civil Engineering which enjoys an excellent reputation, both locally and internationally. Since development is the essence of life, I hope to continue developing this distinguished Journal, building on the effort of all the Editors-in-Chief and Editorial Board Members as well as Advisory Boards of the Journal since its establishment about a decade ago. I will do my best to focus on publishing high quality diverse articles and move forward in the indexing issue of the Journal.