用改进的Sollin和改进的Dijkstra算法求解最短总路径长度生成树问题

Q2 Pharmacology, Toxicology and Pharmaceutics
Wamiliana Wamiliana, Reni Permata Sari, Astri Reformasari, Jani Suparman, Akmal Junaidi
{"title":"用改进的Sollin和改进的Dijkstra算法求解最短总路径长度生成树问题","authors":"Wamiliana Wamiliana, Reni Permata Sari, Astri Reformasari, Jani Suparman, Akmal Junaidi","doi":"10.26554/sti.2023.8.4.684-690","DOIUrl":null,"url":null,"abstract":"In a weighted connected graph, the shortest total path length spanning tree problem is a problem when we need to discover the spanning tree with the lowest total cost of all pairwise distances between its vertices. This problem is also known as the minimum routing cost spanning tree (MRCST). In this study, we will discuss the Modified Sollin and Modified Dijkstra Algorithms to solve that problem which implemented on 300 problems are complete graphs of orders 10 to 100 in increments of 10, where every order consists of 30 problems. The results show that the performance of the Modified Dijkstra and the Modified Sollin Algorithms are slightly similar. On orders 10, 20, 30, 60, and 80, the Modified Dijkstra Algorithm performs better than the Modified Sollin, however on orders 40, 50, 70, 90, and 100, the Modified Sollin performs better.","PeriodicalId":21644,"journal":{"name":"Science and Technology Indonesia","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solving the Shortest Total Path Length Spanning Tree Problem Using the Modified Sollin and Modified Dijkstra Algorithms\",\"authors\":\"Wamiliana Wamiliana, Reni Permata Sari, Astri Reformasari, Jani Suparman, Akmal Junaidi\",\"doi\":\"10.26554/sti.2023.8.4.684-690\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a weighted connected graph, the shortest total path length spanning tree problem is a problem when we need to discover the spanning tree with the lowest total cost of all pairwise distances between its vertices. This problem is also known as the minimum routing cost spanning tree (MRCST). In this study, we will discuss the Modified Sollin and Modified Dijkstra Algorithms to solve that problem which implemented on 300 problems are complete graphs of orders 10 to 100 in increments of 10, where every order consists of 30 problems. The results show that the performance of the Modified Dijkstra and the Modified Sollin Algorithms are slightly similar. On orders 10, 20, 30, 60, and 80, the Modified Dijkstra Algorithm performs better than the Modified Sollin, however on orders 40, 50, 70, 90, and 100, the Modified Sollin performs better.\",\"PeriodicalId\":21644,\"journal\":{\"name\":\"Science and Technology Indonesia\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science and Technology Indonesia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26554/sti.2023.8.4.684-690\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology Indonesia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26554/sti.2023.8.4.684-690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

摘要

在加权连通图中,总路径长度最短的生成树问题是一个需要在其顶点之间的所有成对距离中找出总代价最小的生成树的问题。这个问题也被称为最小路由开销生成树(MRCST)。在本研究中,我们将讨论改进的Sollin算法和改进的Dijkstra算法来解决300个问题,这些问题是10到100阶的完全图,增量为10,其中每个阶由30个问题组成。结果表明,改进的Dijkstra算法和改进的Sollin算法的性能略有相似。在10、20、30、60和80阶上,改进的Dijkstra算法比改进的Sollin算法性能更好,而在40、50、70、90和100阶上,改进的Sollin算法性能更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solving the Shortest Total Path Length Spanning Tree Problem Using the Modified Sollin and Modified Dijkstra Algorithms
In a weighted connected graph, the shortest total path length spanning tree problem is a problem when we need to discover the spanning tree with the lowest total cost of all pairwise distances between its vertices. This problem is also known as the minimum routing cost spanning tree (MRCST). In this study, we will discuss the Modified Sollin and Modified Dijkstra Algorithms to solve that problem which implemented on 300 problems are complete graphs of orders 10 to 100 in increments of 10, where every order consists of 30 problems. The results show that the performance of the Modified Dijkstra and the Modified Sollin Algorithms are slightly similar. On orders 10, 20, 30, 60, and 80, the Modified Dijkstra Algorithm performs better than the Modified Sollin, however on orders 40, 50, 70, 90, and 100, the Modified Sollin performs better.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science and Technology Indonesia
Science and Technology Indonesia Pharmacology, Toxicology and Pharmaceutics-Pharmacology, Toxicology and Pharmaceutics (miscellaneous)
CiteScore
1.80
自引率
0.00%
发文量
72
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信