用于变量选择和估算的两步混合模型:结构活动关系定量研究的应用

IF 2.3 4区 化学 Q1 SOCIAL WORK
Henrietta Ebele Oranye, Fidelis Ifeanyi Ugwuowo, Kingsley Chinedu Arum
{"title":"用于变量选择和估算的两步混合模型:结构活动关系定量研究的应用","authors":"Henrietta Ebele Oranye,&nbsp;Fidelis Ifeanyi Ugwuowo,&nbsp;Kingsley Chinedu Arum","doi":"10.1002/cem.3522","DOIUrl":null,"url":null,"abstract":"<p>In this study, we developed a simple technique for effective parameter estimation and prediction of the quantitative structure activity relationship studies using a two-step procedure. The first step is to choose the important molecular descriptors using the random forest regression, and the second step is to optimally predict the biological activity of the selected chemical compounds using the following estimators: ridge regression, jackknife ridge, Liu regression, jackknife Liu, Kibria–Lukman, and jackknife Kibria–Lukman. We conducted a simulation study and a real-life analysis with a quantitative structure–activity relationship (QSAR) data with 2540 descriptors after preprocessing. The optimal prediction is determined using the cross-validation error. The estimator with minimum cross-validation error is considered best. It is obvious that performing jackknife estimation after random forest selection is preferred.</p>","PeriodicalId":15274,"journal":{"name":"Journal of Chemometrics","volume":"38 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-step hybrid modeling for variable selection and estimation: An application to quantitative structure activity relationship study\",\"authors\":\"Henrietta Ebele Oranye,&nbsp;Fidelis Ifeanyi Ugwuowo,&nbsp;Kingsley Chinedu Arum\",\"doi\":\"10.1002/cem.3522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, we developed a simple technique for effective parameter estimation and prediction of the quantitative structure activity relationship studies using a two-step procedure. The first step is to choose the important molecular descriptors using the random forest regression, and the second step is to optimally predict the biological activity of the selected chemical compounds using the following estimators: ridge regression, jackknife ridge, Liu regression, jackknife Liu, Kibria–Lukman, and jackknife Kibria–Lukman. We conducted a simulation study and a real-life analysis with a quantitative structure–activity relationship (QSAR) data with 2540 descriptors after preprocessing. The optimal prediction is determined using the cross-validation error. The estimator with minimum cross-validation error is considered best. It is obvious that performing jackknife estimation after random forest selection is preferred.</p>\",\"PeriodicalId\":15274,\"journal\":{\"name\":\"Journal of Chemometrics\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemometrics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cem.3522\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOCIAL WORK\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemometrics","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cem.3522","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL WORK","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们开发了一种简单的技术,采用两步法对定量结构活性关系研究进行有效的参数估计和预测。第一步是使用随机森林回归法选择重要的分子描述因子,第二步是使用以下估计器优化预测所选化合物的生物活性:脊回归、杰克刀脊、刘回归、杰克刀刘、Kibria-Lukman 和杰克刀 Kibria-Lukman。我们对经过预处理的 2540 个描述符的定量结构-活性关系(QSAR)数据进行了模拟研究和实际分析。利用交叉验证误差确定最佳预测值。交叉验证误差最小的估计器被认为是最佳的。很明显,在随机森林选择后进行千刀估计是更好的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two-step hybrid modeling for variable selection and estimation: An application to quantitative structure activity relationship study

In this study, we developed a simple technique for effective parameter estimation and prediction of the quantitative structure activity relationship studies using a two-step procedure. The first step is to choose the important molecular descriptors using the random forest regression, and the second step is to optimally predict the biological activity of the selected chemical compounds using the following estimators: ridge regression, jackknife ridge, Liu regression, jackknife Liu, Kibria–Lukman, and jackknife Kibria–Lukman. We conducted a simulation study and a real-life analysis with a quantitative structure–activity relationship (QSAR) data with 2540 descriptors after preprocessing. The optimal prediction is determined using the cross-validation error. The estimator with minimum cross-validation error is considered best. It is obvious that performing jackknife estimation after random forest selection is preferred.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemometrics
Journal of Chemometrics 化学-分析化学
CiteScore
5.20
自引率
8.30%
发文量
78
审稿时长
2 months
期刊介绍: The Journal of Chemometrics is devoted to the rapid publication of original scientific papers, reviews and short communications on fundamental and applied aspects of chemometrics. It also provides a forum for the exchange of information on meetings and other news relevant to the growing community of scientists who are interested in chemometrics and its applications. Short, critical review papers are a particularly important feature of the journal, in view of the multidisciplinary readership at which it is aimed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信