{"title":"多维波雷尔流的Katok特殊表示定理","authors":"KONSTANTIN SLUTSKY","doi":"10.1017/etds.2023.62","DOIUrl":null,"url":null,"abstract":"Abstract Katok’s special representation theorem states that any free ergodic measure- preserving $\\mathbb {R}^{d}$ -flow can be realized as a special flow over a $\\mathbb {Z}^{d}$ -action. It provides a multidimensional generalization of the ‘flow under a function’ construction. We prove the analog of Katok’s theorem in the framework of Borel dynamics and show that, likewise, all free Borel $\\mathbb {R}^{d}$ -flows emerge from $\\mathbb {Z}^{d}$ -actions through the special flow construction using bi-Lipschitz cocycles.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Katok’s special representation theorem for multidimensional Borel flows\",\"authors\":\"KONSTANTIN SLUTSKY\",\"doi\":\"10.1017/etds.2023.62\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Katok’s special representation theorem states that any free ergodic measure- preserving $\\\\mathbb {R}^{d}$ -flow can be realized as a special flow over a $\\\\mathbb {Z}^{d}$ -action. It provides a multidimensional generalization of the ‘flow under a function’ construction. We prove the analog of Katok’s theorem in the framework of Borel dynamics and show that, likewise, all free Borel $\\\\mathbb {R}^{d}$ -flows emerge from $\\\\mathbb {Z}^{d}$ -actions through the special flow construction using bi-Lipschitz cocycles.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/etds.2023.62\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/etds.2023.62","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Katok’s special representation theorem for multidimensional Borel flows
Abstract Katok’s special representation theorem states that any free ergodic measure- preserving $\mathbb {R}^{d}$ -flow can be realized as a special flow over a $\mathbb {Z}^{d}$ -action. It provides a multidimensional generalization of the ‘flow under a function’ construction. We prove the analog of Katok’s theorem in the framework of Borel dynamics and show that, likewise, all free Borel $\mathbb {R}^{d}$ -flows emerge from $\mathbb {Z}^{d}$ -actions through the special flow construction using bi-Lipschitz cocycles.