多维波雷尔流的Katok特殊表示定理

Pub Date : 2023-10-23 DOI:10.1017/etds.2023.62
KONSTANTIN SLUTSKY
{"title":"多维波雷尔流的Katok特殊表示定理","authors":"KONSTANTIN SLUTSKY","doi":"10.1017/etds.2023.62","DOIUrl":null,"url":null,"abstract":"Abstract Katok’s special representation theorem states that any free ergodic measure- preserving $\\mathbb {R}^{d}$ -flow can be realized as a special flow over a $\\mathbb {Z}^{d}$ -action. It provides a multidimensional generalization of the ‘flow under a function’ construction. We prove the analog of Katok’s theorem in the framework of Borel dynamics and show that, likewise, all free Borel $\\mathbb {R}^{d}$ -flows emerge from $\\mathbb {Z}^{d}$ -actions through the special flow construction using bi-Lipschitz cocycles.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Katok’s special representation theorem for multidimensional Borel flows\",\"authors\":\"KONSTANTIN SLUTSKY\",\"doi\":\"10.1017/etds.2023.62\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Katok’s special representation theorem states that any free ergodic measure- preserving $\\\\mathbb {R}^{d}$ -flow can be realized as a special flow over a $\\\\mathbb {Z}^{d}$ -action. It provides a multidimensional generalization of the ‘flow under a function’ construction. We prove the analog of Katok’s theorem in the framework of Borel dynamics and show that, likewise, all free Borel $\\\\mathbb {R}^{d}$ -flows emerge from $\\\\mathbb {Z}^{d}$ -actions through the special flow construction using bi-Lipschitz cocycles.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/etds.2023.62\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/etds.2023.62","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Katok的特殊表示定理指出,任何保持$\mathbb {R}^{d}$ -流的自由遍遍测度都可以被实现为$\mathbb {Z}^{d}$ -动作上的特殊流。它提供了“功能下的流程”结构的多维泛化。我们在Borel动力学的框架中证明了Katok定理的类似性,并同样证明了所有自由的Borel $\mathbb {R}^{d}$ -流都是通过使用bi-Lipschitz环的特殊流构造从$\mathbb {Z}^{d}$ -动作中产生的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Katok’s special representation theorem for multidimensional Borel flows
Abstract Katok’s special representation theorem states that any free ergodic measure- preserving $\mathbb {R}^{d}$ -flow can be realized as a special flow over a $\mathbb {Z}^{d}$ -action. It provides a multidimensional generalization of the ‘flow under a function’ construction. We prove the analog of Katok’s theorem in the framework of Borel dynamics and show that, likewise, all free Borel $\mathbb {R}^{d}$ -flows emerge from $\mathbb {Z}^{d}$ -actions through the special flow construction using bi-Lipschitz cocycles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信