{"title":"先进型分段连续双曲型偏微分方程galerkin有限元法的收敛性和稳定性","authors":"Yongtang Chen, Qi Wang","doi":"10.3846/mma.2023.16677","DOIUrl":null,"url":null,"abstract":"This paper deals with the convergence and stability of Galerkin finite element method for a hyperbolic partial differential equations with piecewise continuous arguments of advanced type. First of all, we obtain the expression of analytic solution by the method of separation variable, then the sufficient conditions for stability are obtained. Semidiscrete and fully discrete schemes are derived by Galerkin finite element method, and their convergence are both analyzed in L2-norm. Moreover, the stability of the two schemes are investigated. The semidiscrete scheme can achieve unconditionally stability. The sufficient conditions of stability for fully discrete scheme are derived under which the analytic solution is asymptotically stable. Finally, some numerical experiments are presented to illustrate the theoretical results.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CONVERGENCE AND STABILITY OF GALERKIN FINITE ELEMENT METHOD FOR HYPERBOLIC PARTIAL DIFFERENTIAL EQUATION WITH PIECEWISE CONTINUOUS ARGUMENTS OF ADVANCED TYPE\",\"authors\":\"Yongtang Chen, Qi Wang\",\"doi\":\"10.3846/mma.2023.16677\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the convergence and stability of Galerkin finite element method for a hyperbolic partial differential equations with piecewise continuous arguments of advanced type. First of all, we obtain the expression of analytic solution by the method of separation variable, then the sufficient conditions for stability are obtained. Semidiscrete and fully discrete schemes are derived by Galerkin finite element method, and their convergence are both analyzed in L2-norm. Moreover, the stability of the two schemes are investigated. The semidiscrete scheme can achieve unconditionally stability. The sufficient conditions of stability for fully discrete scheme are derived under which the analytic solution is asymptotically stable. Finally, some numerical experiments are presented to illustrate the theoretical results.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3846/mma.2023.16677\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3846/mma.2023.16677","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
CONVERGENCE AND STABILITY OF GALERKIN FINITE ELEMENT METHOD FOR HYPERBOLIC PARTIAL DIFFERENTIAL EQUATION WITH PIECEWISE CONTINUOUS ARGUMENTS OF ADVANCED TYPE
This paper deals with the convergence and stability of Galerkin finite element method for a hyperbolic partial differential equations with piecewise continuous arguments of advanced type. First of all, we obtain the expression of analytic solution by the method of separation variable, then the sufficient conditions for stability are obtained. Semidiscrete and fully discrete schemes are derived by Galerkin finite element method, and their convergence are both analyzed in L2-norm. Moreover, the stability of the two schemes are investigated. The semidiscrete scheme can achieve unconditionally stability. The sufficient conditions of stability for fully discrete scheme are derived under which the analytic solution is asymptotically stable. Finally, some numerical experiments are presented to illustrate the theoretical results.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.