牛顿流体夹在非牛顿流体之间通过复合多孔通道的多相流动

IF 1.4 Q3 ENGINEERING, MECHANICAL
Pawan Kumar Patel, Satya Deo, Pankaj Kumar Maurya
{"title":"牛顿流体夹在非牛顿流体之间通过复合多孔通道的多相流动","authors":"Pawan Kumar Patel, Satya Deo, Pankaj Kumar Maurya","doi":"10.1615/specialtopicsrevporousmedia.2023049341","DOIUrl":null,"url":null,"abstract":"The present study is concerned with the flow of a Newtonian fluid through a composite rectangular porous channel sandwiched between two non-Newtonian fluids (micropolar and couple stress fluids). The horizontal composite porous channel is divided into three porous channels of uniform width and flow is induced due to a constant pressure gradient. The governing Brinkman equation is used to describe the motion of the middle porous channel, while governing equations of micropolar and couple stress fluids are used to describe the motion of lower and upper porous channels, respectively. Expressions of linear velocity, microrotations, stresses (shear and couple) and flow rate are obtained analytically. Continuity of velocity, continuity of tangential stresses, no slip, no spin and no couple stress conditions are used at interfaces and outer surfaces of the composite porous channel as boundary conditions. Effect of various parameters on flow rate and fluid velocity are discussed and presented graphically.","PeriodicalId":45135,"journal":{"name":"Special Topics & Reviews in Porous Media-An International Journal","volume":"48 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiphase flow of Newtonian fluid sandwiched between non-Newtonian fluids through a composite porous channel\",\"authors\":\"Pawan Kumar Patel, Satya Deo, Pankaj Kumar Maurya\",\"doi\":\"10.1615/specialtopicsrevporousmedia.2023049341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present study is concerned with the flow of a Newtonian fluid through a composite rectangular porous channel sandwiched between two non-Newtonian fluids (micropolar and couple stress fluids). The horizontal composite porous channel is divided into three porous channels of uniform width and flow is induced due to a constant pressure gradient. The governing Brinkman equation is used to describe the motion of the middle porous channel, while governing equations of micropolar and couple stress fluids are used to describe the motion of lower and upper porous channels, respectively. Expressions of linear velocity, microrotations, stresses (shear and couple) and flow rate are obtained analytically. Continuity of velocity, continuity of tangential stresses, no slip, no spin and no couple stress conditions are used at interfaces and outer surfaces of the composite porous channel as boundary conditions. Effect of various parameters on flow rate and fluid velocity are discussed and presented graphically.\",\"PeriodicalId\":45135,\"journal\":{\"name\":\"Special Topics & Reviews in Porous Media-An International Journal\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Special Topics & Reviews in Porous Media-An International Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1615/specialtopicsrevporousmedia.2023049341\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Special Topics & Reviews in Porous Media-An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/specialtopicsrevporousmedia.2023049341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究涉及牛顿流体通过夹在两种非牛顿流体(微极流体和偶应力流体)之间的复合矩形多孔通道的流动。水平复合多孔通道被划分为三个等宽的多孔通道,并由恒定压力梯度诱导流动。采用Brinkman控制方程描述中间多孔通道的运动,采用微极流体控制方程和耦合应力流体控制方程分别描述下部和上部多孔通道的运动。得到了线速度、微旋转、应力(剪切和偶应力)和流量的解析表达式。在复合多孔通道的界面和外表面采用速度连续、切向应力连续、无滑移、无自旋和无耦合应力条件作为边界条件。讨论了各种参数对流量和流体速度的影响,并给出了图形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiphase flow of Newtonian fluid sandwiched between non-Newtonian fluids through a composite porous channel
The present study is concerned with the flow of a Newtonian fluid through a composite rectangular porous channel sandwiched between two non-Newtonian fluids (micropolar and couple stress fluids). The horizontal composite porous channel is divided into three porous channels of uniform width and flow is induced due to a constant pressure gradient. The governing Brinkman equation is used to describe the motion of the middle porous channel, while governing equations of micropolar and couple stress fluids are used to describe the motion of lower and upper porous channels, respectively. Expressions of linear velocity, microrotations, stresses (shear and couple) and flow rate are obtained analytically. Continuity of velocity, continuity of tangential stresses, no slip, no spin and no couple stress conditions are used at interfaces and outer surfaces of the composite porous channel as boundary conditions. Effect of various parameters on flow rate and fluid velocity are discussed and presented graphically.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信