None Shi Liang-Zhu, None Zhang Meng, None Chu Yu-Xi, None Liu Bo-Wen, None Hu Ming-Lie
{"title":"飞秒光纤激光器五次谐波产生的206nm深紫外激光器","authors":"None Shi Liang-Zhu, None Zhang Meng, None Chu Yu-Xi, None Liu Bo-Wen, None Hu Ming-Lie","doi":"10.7498/aps.72.20230877","DOIUrl":null,"url":null,"abstract":"Deep ultraviolet (DUV) femtosecond laser combines the advantages of high single-photon energy of DUV laser and high peak power of femtosecond laser, which is widely used in scientific research, biomedicine, material processing and so on. However, there is a problem in the process of generating DUV femtosecond laser based on nonlinear frequency conversion which the group velocity mismatch caused by dispersion will make the temporal walk-off of the nonlinear frequency conversion larger than the pulse duration of the femtosecond laser, which makes the generation of the DUV femtosecond laser very difficult. In this paper,based on a Yb-doped fiber femtosecond laser, the delay line was optimized to precisely compensate the spatial and temporal walk-off, so DUV femtosecond laser with a center wavelength of 206 nm and a repetition rate of 1 MHz is obtained, whose maximum output power is 102 mW. The maximum conversion efficiency is 4.25% from near infrared to DUV. The RMS power stability is 0.88% within 3 hours, and the peak-to-peak power stability is 3.75%. The evolution of laser spectra and beam quality during the process of second harmonic generation (SHG), FHG and SFG has been systematically studied. The experiment results provide a basis for the generation of DUV femtosecond laser from femtosecond fiber lasers.","PeriodicalId":10252,"journal":{"name":"Chinese Physics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"206 nm deep ultraviolet laser from fifth harmonic generation of femtosecond fiber laser\",\"authors\":\"None Shi Liang-Zhu, None Zhang Meng, None Chu Yu-Xi, None Liu Bo-Wen, None Hu Ming-Lie\",\"doi\":\"10.7498/aps.72.20230877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep ultraviolet (DUV) femtosecond laser combines the advantages of high single-photon energy of DUV laser and high peak power of femtosecond laser, which is widely used in scientific research, biomedicine, material processing and so on. However, there is a problem in the process of generating DUV femtosecond laser based on nonlinear frequency conversion which the group velocity mismatch caused by dispersion will make the temporal walk-off of the nonlinear frequency conversion larger than the pulse duration of the femtosecond laser, which makes the generation of the DUV femtosecond laser very difficult. In this paper,based on a Yb-doped fiber femtosecond laser, the delay line was optimized to precisely compensate the spatial and temporal walk-off, so DUV femtosecond laser with a center wavelength of 206 nm and a repetition rate of 1 MHz is obtained, whose maximum output power is 102 mW. The maximum conversion efficiency is 4.25% from near infrared to DUV. The RMS power stability is 0.88% within 3 hours, and the peak-to-peak power stability is 3.75%. The evolution of laser spectra and beam quality during the process of second harmonic generation (SHG), FHG and SFG has been systematically studied. The experiment results provide a basis for the generation of DUV femtosecond laser from femtosecond fiber lasers.\",\"PeriodicalId\":10252,\"journal\":{\"name\":\"Chinese Physics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7498/aps.72.20230877\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7498/aps.72.20230877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
206 nm deep ultraviolet laser from fifth harmonic generation of femtosecond fiber laser
Deep ultraviolet (DUV) femtosecond laser combines the advantages of high single-photon energy of DUV laser and high peak power of femtosecond laser, which is widely used in scientific research, biomedicine, material processing and so on. However, there is a problem in the process of generating DUV femtosecond laser based on nonlinear frequency conversion which the group velocity mismatch caused by dispersion will make the temporal walk-off of the nonlinear frequency conversion larger than the pulse duration of the femtosecond laser, which makes the generation of the DUV femtosecond laser very difficult. In this paper,based on a Yb-doped fiber femtosecond laser, the delay line was optimized to precisely compensate the spatial and temporal walk-off, so DUV femtosecond laser with a center wavelength of 206 nm and a repetition rate of 1 MHz is obtained, whose maximum output power is 102 mW. The maximum conversion efficiency is 4.25% from near infrared to DUV. The RMS power stability is 0.88% within 3 hours, and the peak-to-peak power stability is 3.75%. The evolution of laser spectra and beam quality during the process of second harmonic generation (SHG), FHG and SFG has been systematically studied. The experiment results provide a basis for the generation of DUV femtosecond laser from femtosecond fiber lasers.