庞特里亚金原理及其对COVID-19传播的最优控制

IF 0.5 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
{"title":"庞特里亚金原理及其对COVID-19传播的最优控制","authors":"","doi":"10.28919/cmbn/8157","DOIUrl":null,"url":null,"abstract":"A mathematical model is a beautiful and powerful way to depict the condition of epidemiological disease transmission. In this work, we used a nonlinear differential equation to construct a mathematical model of COVID-19. Nonlinear differential equation illustrates the spread of COVID-19 disease incorporating the vaccinated and quarantined subpopulations. A compartment of a model of COVID-19 disease was carried out involving several control variables and several biological assumptions. Applying the control variables to a mathematical model is the prevention of direct contact between infected and susceptible subpopulations, a vaccination control process, and an intensive handling of infected and quarantined populations. In the next section, an investigation of the positivity and boundedness of the solution COVID-19 disease, and an analysis of the existence and uniqueness of the solution was carried out. Then, the existence of the control variables involved in the mathematical model that has been designed is demonstrated. Furthermore, by applying the Pontryagin Principle to determine the optimal conditions and best values ​​for each control variable that holds on. On the other hand, in addition to the mathematical analysis result, provides numerical simulations using MATLAB software as one of the steps in describing the behavior of the dynamical solution or the phase portrait. Finally, the last section shows that the optimal control condition carried out is able to reduce the density of infected and quarantined subpopulations, respectively. Hence, it is in line with the functional objective that has been constructed.","PeriodicalId":44079,"journal":{"name":"Communications in Mathematical Biology and Neuroscience","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Pontryagin principle and optimal control of spreading COVID-19 with vaccination and quarantine subtype\",\"authors\":\"\",\"doi\":\"10.28919/cmbn/8157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A mathematical model is a beautiful and powerful way to depict the condition of epidemiological disease transmission. In this work, we used a nonlinear differential equation to construct a mathematical model of COVID-19. Nonlinear differential equation illustrates the spread of COVID-19 disease incorporating the vaccinated and quarantined subpopulations. A compartment of a model of COVID-19 disease was carried out involving several control variables and several biological assumptions. Applying the control variables to a mathematical model is the prevention of direct contact between infected and susceptible subpopulations, a vaccination control process, and an intensive handling of infected and quarantined populations. In the next section, an investigation of the positivity and boundedness of the solution COVID-19 disease, and an analysis of the existence and uniqueness of the solution was carried out. Then, the existence of the control variables involved in the mathematical model that has been designed is demonstrated. Furthermore, by applying the Pontryagin Principle to determine the optimal conditions and best values ​​for each control variable that holds on. On the other hand, in addition to the mathematical analysis result, provides numerical simulations using MATLAB software as one of the steps in describing the behavior of the dynamical solution or the phase portrait. Finally, the last section shows that the optimal control condition carried out is able to reduce the density of infected and quarantined subpopulations, respectively. Hence, it is in line with the functional objective that has been constructed.\",\"PeriodicalId\":44079,\"journal\":{\"name\":\"Communications in Mathematical Biology and Neuroscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Biology and Neuroscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28919/cmbn/8157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Biology and Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28919/cmbn/8157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

数学模型是描述流行病学疾病传播状况的一种美丽而有力的方法。在这项工作中,我们使用非线性微分方程构建了COVID-19的数学模型。非线性微分方程说明了COVID-19疾病的传播,包括接种疫苗和隔离的亚群。对COVID-19疾病模型进行了一个隔间,涉及几个控制变量和几个生物学假设。将控制变量应用于数学模型是预防感染亚群和易感亚群之间的直接接触,疫苗接种控制过程以及对感染和隔离人群的强化处理。在下一节中,对COVID-19疾病解的正性和有界性进行了调查,并对解的存在性和唯一性进行了分析。然后,证明了所设计的数学模型中所涉及的控制变量的存在性。此外,通过应用庞特里亚金原理来确定每个控制变量的最佳条件和最佳值。另一方面,除了数学分析结果之外,还提供了使用MATLAB软件进行数值模拟的方法,作为描述动力学解或相位画像行为的步骤之一。最后,最后一节表明,所实施的最优控制条件能够分别降低感染亚群和隔离亚群的密度。因此,它符合已构建的功能目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Pontryagin principle and optimal control of spreading COVID-19 with vaccination and quarantine subtype
A mathematical model is a beautiful and powerful way to depict the condition of epidemiological disease transmission. In this work, we used a nonlinear differential equation to construct a mathematical model of COVID-19. Nonlinear differential equation illustrates the spread of COVID-19 disease incorporating the vaccinated and quarantined subpopulations. A compartment of a model of COVID-19 disease was carried out involving several control variables and several biological assumptions. Applying the control variables to a mathematical model is the prevention of direct contact between infected and susceptible subpopulations, a vaccination control process, and an intensive handling of infected and quarantined populations. In the next section, an investigation of the positivity and boundedness of the solution COVID-19 disease, and an analysis of the existence and uniqueness of the solution was carried out. Then, the existence of the control variables involved in the mathematical model that has been designed is demonstrated. Furthermore, by applying the Pontryagin Principle to determine the optimal conditions and best values ​​for each control variable that holds on. On the other hand, in addition to the mathematical analysis result, provides numerical simulations using MATLAB software as one of the steps in describing the behavior of the dynamical solution or the phase portrait. Finally, the last section shows that the optimal control condition carried out is able to reduce the density of infected and quarantined subpopulations, respectively. Hence, it is in line with the functional objective that has been constructed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematical Biology and Neuroscience
Communications in Mathematical Biology and Neuroscience COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
2.10
自引率
15.40%
发文量
80
期刊介绍: Communications in Mathematical Biology and Neuroscience (CMBN) is a peer-reviewed open access international journal, which is aimed to provide a publication forum for important research in all aspects of mathematical biology and neuroscience. This journal will accept high quality articles containing original research results and survey articles of exceptional merit.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信