在极端地磁风暴期间,热层风和成分变化的观测证据以及在欧洲扇区产生的电离层扰动

IF 3.4 2区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Jeongheon Kim, Young-Sil Kwak, Changsup Lee, Jaewook Lee, Hosik Kam, Tae-Yong Yang, Geonhwa Jee, YongHa Kim
{"title":"在极端地磁风暴期间,热层风和成分变化的观测证据以及在欧洲扇区产生的电离层扰动","authors":"Jeongheon Kim, Young-Sil Kwak, Changsup Lee, Jaewook Lee, Hosik Kam, Tae-Yong Yang, Geonhwa Jee, YongHa Kim","doi":"10.1051/swsc/2023025","DOIUrl":null,"url":null,"abstract":"On November 1st and 2nd, 2021, four Halo coronal mass ejections were ejected from the Sun, releasing billions of tons of high-energy particles into interplanetary space. These were directed towards the Earth and reached our planet on November 3rd and 4th, 2021, generating the first G3-level extreme geomagnetic storm since the beginning of the 25th solar cycle. In this study, we investigate the thermospheric and ionospheric responses in the European sector to a G3-level storm using various observational data from Fabry-Perot interferometer, Ionospheric Connection Explorer/Michelson Interferometer for Global High-resolution Thermospheric Imaging (ICON/MIGHTI), and Thermosphere Ionosphere Mesosphere Energetics and Dynamics/Global Ultraviolet Imager (TIMED/GUVI). The results show positive ionospheric storms in the middle and low latitudes of Europe which may be associated with the equatorward and westward neutral winds induced by heating in the polar region. In contrast, negative storms were detected at high latitudes in association with the increase in thermospheric density (upwelling). These two antithetical responses were confirmed by using European ionosonde and total electron contents (TEC) observation chains distributed over a wide range of latitudes. Finally, we, for the first time, attempt to identify the imaginary boundary line between the two responses.","PeriodicalId":17034,"journal":{"name":"Journal of Space Weather and Space Climate","volume":"18 1","pages":"0"},"PeriodicalIF":3.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Observational evidence of thermospheric wind and composition changes and the resulting ionospheric disturbances in the European sector during extreme geomagnetic storms\",\"authors\":\"Jeongheon Kim, Young-Sil Kwak, Changsup Lee, Jaewook Lee, Hosik Kam, Tae-Yong Yang, Geonhwa Jee, YongHa Kim\",\"doi\":\"10.1051/swsc/2023025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On November 1st and 2nd, 2021, four Halo coronal mass ejections were ejected from the Sun, releasing billions of tons of high-energy particles into interplanetary space. These were directed towards the Earth and reached our planet on November 3rd and 4th, 2021, generating the first G3-level extreme geomagnetic storm since the beginning of the 25th solar cycle. In this study, we investigate the thermospheric and ionospheric responses in the European sector to a G3-level storm using various observational data from Fabry-Perot interferometer, Ionospheric Connection Explorer/Michelson Interferometer for Global High-resolution Thermospheric Imaging (ICON/MIGHTI), and Thermosphere Ionosphere Mesosphere Energetics and Dynamics/Global Ultraviolet Imager (TIMED/GUVI). The results show positive ionospheric storms in the middle and low latitudes of Europe which may be associated with the equatorward and westward neutral winds induced by heating in the polar region. In contrast, negative storms were detected at high latitudes in association with the increase in thermospheric density (upwelling). These two antithetical responses were confirmed by using European ionosonde and total electron contents (TEC) observation chains distributed over a wide range of latitudes. Finally, we, for the first time, attempt to identify the imaginary boundary line between the two responses.\",\"PeriodicalId\":17034,\"journal\":{\"name\":\"Journal of Space Weather and Space Climate\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Space Weather and Space Climate\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/swsc/2023025\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Space Weather and Space Climate","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/swsc/2023025","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

在2021年11月1日和2日,太阳发生了四次日冕物质抛射,向行星际空间释放了数十亿吨的高能粒子。这些都指向地球,并于2021年11月3日和4日到达我们的星球,产生了自第25个太阳周期开始以来的第一次g3级极端地磁风暴。本研究利用Fabry-Perot干涉仪、电离层连接探测器/迈克尔逊全球高分辨率热层成像干涉仪(ICON/ might)和热层电离层中间层能量动力学/全球紫外成像仪(TIMED/GUVI)的多种观测数据,研究了欧洲地区热层和电离层对g3级风暴的响应。结果表明,欧洲中低纬度地区的正电离层风暴可能与极地加热引起的赤道和西向中性风有关。相反,在高纬度地区探测到的负风暴与热层密度(上升流)的增加有关。这两种相反的响应通过分布在广泛纬度范围内的欧洲离子探空仪和总电子含量(TEC)观测链得到证实。最后,我们第一次试图确定这两种反应之间的假想界线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Observational evidence of thermospheric wind and composition changes and the resulting ionospheric disturbances in the European sector during extreme geomagnetic storms
On November 1st and 2nd, 2021, four Halo coronal mass ejections were ejected from the Sun, releasing billions of tons of high-energy particles into interplanetary space. These were directed towards the Earth and reached our planet on November 3rd and 4th, 2021, generating the first G3-level extreme geomagnetic storm since the beginning of the 25th solar cycle. In this study, we investigate the thermospheric and ionospheric responses in the European sector to a G3-level storm using various observational data from Fabry-Perot interferometer, Ionospheric Connection Explorer/Michelson Interferometer for Global High-resolution Thermospheric Imaging (ICON/MIGHTI), and Thermosphere Ionosphere Mesosphere Energetics and Dynamics/Global Ultraviolet Imager (TIMED/GUVI). The results show positive ionospheric storms in the middle and low latitudes of Europe which may be associated with the equatorward and westward neutral winds induced by heating in the polar region. In contrast, negative storms were detected at high latitudes in association with the increase in thermospheric density (upwelling). These two antithetical responses were confirmed by using European ionosonde and total electron contents (TEC) observation chains distributed over a wide range of latitudes. Finally, we, for the first time, attempt to identify the imaginary boundary line between the two responses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Space Weather and Space Climate
Journal of Space Weather and Space Climate ASTRONOMY & ASTROPHYSICS-GEOCHEMISTRY & GEOPHYSICS
CiteScore
6.90
自引率
6.10%
发文量
40
审稿时长
8 weeks
期刊介绍: The Journal of Space Weather and Space Climate (SWSC) is an international multi-disciplinary and interdisciplinary peer-reviewed open access journal which publishes papers on all aspects of space weather and space climate from a broad range of scientific and technical fields including solar physics, space plasma physics, aeronomy, planetology, radio science, geophysics, biology, medicine, astronautics, aeronautics, electrical engineering, meteorology, climatology, mathematics, economy, informatics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信